量子退火与机器学习(1):少量数据求解未知QUBO矩阵,以少见多


文章目录

  • 前言
  • ー、复习QUBO:中药配伍的复杂性
    • 1.QUBO 的介入:寻找最佳药材组合
  • 二、难题:QUBO矩阵未知的问题
    • 1.为什么这么难?
  • 三、稀疏建模(Sparse Modeling)
    • 1. 欠定系统中的稀疏解
    • 2. L1和L2的选择:
  • 三、压缩感知算法(Compressed Sensing)
    • 1. 压缩感知的性质
    • 2. ISTA算法
  • 四、Python实现
    • 1. 代码和结果解释
  • 四、总结


前言

主要是来自大関真之教授的直播课程: 【実践的量子ソリューション創出論・量子力学B・合同補講】第4回: 量子アニーリングによるブラックボックス最適化を実装する【東北大学全学教育・東北大学工学部】
这篇主要讲,怎么用少量数据去推定QUBO矩阵,然后迭代求解未知函数的方法。牵涉的知识如下:

  • QUBO建模
  • 压缩感知算法(Compressed Sensing)
  • 稀疏建模(Sparse Modeling)
  • ISTA算法(iterative shrinkage thresholding algorithm:软阈值迭代算法)

ー、复习QUBO:中药配伍的复杂性

提示:仅用公式进行问题描述,太难懂了,就举个例子,不用深究。

中药讲究配伍,即不同药材组合在一起能产生比单一药材更好的疗效,并且能减少副作用。但是,中药材之间的相互作用非常复杂,哪些药材组合在一起能更好地降血压、哪些药材组合会产生不良反应,这些都很难通过传统方式(例如人工经验)进行高效筛选。

1.QUBO 的介入:寻找最佳药材组合

QUBO 是一种数学优化技术,它特别适用于解决组合优化问题。我们可以将中药配伍问题转化为 QUBO 问题,然后利用量子退火或经典计算方法来寻找最佳的药材组合。

QUBO 如何应用于降血压中药配伍:

  1. 定义二进制变量:

    • 对于每一种可能用于降血压的中药材(比如,黄芪、决明子、菊花、钩藤、杜仲等),我们都定义一个二进制变量 x i 。 对于每一种可能用于降血压的中药材(比如,黄芪、决明子、菊花、钩藤、杜仲等),我们都定义一个二进制变量 x_i。 对于每一种可能用于降血压的中药材(比如,黄芪、决明子、菊花、钩藤、杜仲等),我们都定义一个二进制变量xi
    • 如果 x i = 1 ,则表示在最终的配伍中包含这种药材;如果 x i = 0 ,则表示不包含这种药材。 如果 x_i = 1,则表示在最终的配伍中包含这种药材;如果 x_i = 0,则表示不包含这种药材。 如果xi=1,则表示在最终的配伍中包含这种药材;如果xi=0,则表示不包含这种药材。
  2. 构建目标函数(成本函数):

    • 目标函数需要反映出我们希望达成的疗效的综合打分,例如:
      • 疗效最大化: 包含能有效降低血压的药材组合。我们可以根据现有研究或实验数据,赋予每个药材一个 “降压能力” 的权重,然后尽可能选择权重高的药材组合。
      • 副作用最小化: 避免产生不良反应的药材组合。可以根据文献或实验数据,赋予每个药材一个 “副作用” 的权重,然后尽可能避免选择副作用权重高的药材组合。
      • 协同作用最大化: 鼓励选择有协同增效作用的药材组合。可以使用药材之间相互作用的实验数据来计算协同作用,并将其纳入目标函数。
    • 因此,目标函数会是这样的形式:
      E = ∑ i ( Q i i ∗ x i x i ) ⏟ 对角元素 + ∑ i , j ( i < j ) ( Q i j ∗ x i x j ) ⏟ 上角元素 E = \underbrace{\sum_i(Q_{ii} * x_ix_i)}_{对角元素} + \underbrace{\sum_{i,j(i<j)}(Q_{ij} * x_ix_j)}_{上角元素} E=对角元素 i(Qiixixi)+上角元素 i,j(i<j)(Qijxixj)
      • x i 是二进制变量,表示是否使用第 i 种药材。 x_i是二进制变量,表示是否使用第i种药材。 xi是二进制变量,表示是否使用第i种药材。
      • Q i i 代表第 i 种药材的个体权重 ( 例如,降压能力、副作用 ) 。 Q_{ii}代表第i种药材的个体权重 (例如,降压能力、副作用)。 Qii代表第i种药材的个体权重(例如,降压能力、副作用)
      • Q i j 代表第 i 种和第 j 种药材的相互作用权重 ( 例如,协同作用或不良反应 ) 。 Q_{ij}代表第i种和第j种药材的相互作用权重 (例如,协同作用或不良反应)。 Qij代表第i种和第j种药材的相互作用权重(例如,协同作用或不良反应)
    • 目标是找到能使 Q 的值最小化的 xi 的组合。
  3. 约束条件:

    • 有些情况下,我们可能需要加入一些约束条件,例如:
      • 配方中药材的总数不超过某个值(例如不超过5种)。
      • 必须包含某几种基础药材。
      • 必须避免某些药材同时出现。
    • 这些约束条件也会被转化为 QUBO 中的惩罚项(添加到目标函数中),以确保优化结果满足要求。
  4. 优化:

    • 使用量子退火器,寻找使 QUBO 目标函数 E 最小化的二进制变量x 组合。
    • 计算出的 x_i 的值(0或1)就对应着最佳的配伍组合。

二、难题:QUBO矩阵未知的问题

1.为什么这么难?

  1. 很多问题没有确定的QUBO矩阵
    比如,中药配伍的问题,你不能通过像TSP问题那样,已经知道地点位置,地点间距离,相应的约束条件。

  2. 获得验证数据的周期太长或者难度太大。
    比如,中药配伍的话,你收集一个配方的实验数据,就需要很多人力物力,这样成本代价太高了,不能无限的验证下去。

已经有少量数据的情况下,怎么近似求解QUBO?

  • 思路如下图:

在这里插入图片描述

数据足够多的话,是不是可以解方程。比如,中药配伍问题的情况,各变量的含义如下:

  • x 变量就是用或者不用某位药,n维就代表有n种药。
  • b变量就是每次不同中药组合的测量后的综合药效列表,假定有m个。
  • a 就是每次不同的QUBO矩阵上三角里的元素n列表。a 是无数种可能的,但是里面肯定有一个是我们想要的接近现实的解。
    在这里插入图片描述
    上面的式子有的难懂,给大家举个实例。
  • x
x_typevalue
x₁1
x₂0
x₃1
x₁x₂0
x₁x₃1
x₂x₃0
  • a
a⁽¹⁾a⁽²⁾a⁽³⁾a⁽⁴⁾a⁽⁵⁾a⁽⁶⁾
a₁0.5-0.30.8-0.40.6-0.7
a₂-0.60.7-0.20.5-0.80.2
a₃0.4-0.50.9-0.60.3-0.4
  • b
bvalue
b₁1.9
b₂-1.6
b₃1.6

上面的式子变换一下:

在这里插入图片描述

下面解释一下变换后的式子中各个变量的维度:

  1. 向量 b 是 m 维向量: b ∈ ℝᵐ

  2. 矩阵 A = [a⁽¹⁾, …, a⁽ⁿ⁾] 的维度是:

    • 每个 a⁽ⁱ⁾ 是 m 维向量
    • 一共有 n 个这样的向量
    • 所以 A 的维度是 m × n
  3. x是 n(n+1)/2 维向量(QUBO矩阵的上三角里所有元素): x ∈ R n ( n + 1 ) / 2 x ∈ ℝ^{n(n+1)/2} xRn(n+1)/2

  4. 通过矩阵乘法 Ax:

    • A(m×n) × x(n×1) = b(m×1)
    • 结果 b 是 m 维向量,与原始定义一致

三、稀疏建模(Sparse Modeling)

线性方程组大家都知道,学完线性代数,也都知道可以换成矩阵形式。我就直接贴上wiki截图了。
https://zh.wikipedia.org/zh-cn/%E7%BA%BF%E6%80%A7%E6%96%B9%E7%A8%8B%E7%BB%84
在这里插入图片描述

  • 一般情况下,1个方程解1个未知数,2个方程解2个未知数,这是我们平时接触较多的求解线性系统的情况,称之为适定系统。
    那如果,一个方程有两个未知数呢?这种情况就是欠定系统了。
    在压缩感知理论中,一般用下列式子来表示一个欠定系统:
    b = A x \mathbf{b} = \mathbf{A} \mathbf{x} b=Ax
    其中 R M × N , X ∈ R M , b ∈ R N . 且当 M < N 时,系统维欠定系统 . 其中\mathbb{R}^{M \times N}, X \in \mathbb{R}^M, b \in \mathbb{R}^N. 且当M < N时,系统维欠定系统. 其中RM×N,XRM,bRN.且当M<N时,系统维欠定系统.

方程组的数量不足意味着决定解的条件不足。由于条件不足,如果再增加一些条件就可以确定解。
例如,如果预先知道解,通过将其代入,就可以有效地减少N。现在假设已知解,且x的各分量几乎为0。
在这种情况下,可以从方程组中删除值为0的分量。如果将非零项的数量记为K,那么从M个方程实际上就是求解K个非零分量,即使M < N,只要M > K,就可以求解。

这种大部分分量为零或预期为零的性质称为"稀疏性",具有这种性质的解称为"稀疏解"。

1. 欠定系统中的稀疏解

下面的所有截图都在这个日文资料里:https://www-adsys.sys.i.kyoto-u.ac.jp/mohzeki/Presentation/lecturenote20160727.pdf
对于N维的未知向量x,M维的实数值向量b和M × N的观测矩阵A,假设满足以下关系:

这里即使M < N,当x的分量中大部分为零(具有稀疏性)时,如果非零分量的数量K满足M > K,就可以求得解。
然而,这K个非零分量究竟在哪里?这是未知的。那么如何求解呢?
虽然遗憾,但没有决定性的方法,只能从N个分量中选取K个分量,寻找满足y = Ax的解。从N个中选取K个的组合数,随着N的增大会呈指数级增长。对于高维问题,进行这样的计算在现实中是不可行的。而且虽然说是K个非零项,但K这个数字真的已知吗?这也不一定知道。

因此,当这些非零分量的数量也未知时,应该采取什么样的策略来寻找满足b = Ax的解呢?
其实就是用各种正则化L0,L1,L2正则。

  • L0正则:
    在这里插入图片描述
    ∥ x ∥ 0 ,代表非 0 解的个数。越小越稀疏。 \|\mathbf{x}\|_0,代表非0解的个数。越小越稀疏。 x0,代表非0解的个数。越小越稀疏。

  • L1正则:
    在这里插入图片描述
    ∥ x ∥ 1 = ∣ x 1 ∣ + ∣ x 2 ∣ + ⋯ + ∣ x N ∣ , 代表 x 的绝对值总和。 0 越多, ∥ x ∥ 1 越小越稀疏。 \|\mathbf{x}\|_1 = |x_1| + |x_2| + \cdots + |x_N|, 代表x的绝对值总和。0越多,\|\mathbf{x}\|_1越小越稀疏。 x1=x1+x2++xN,代表x的绝对值总和。0越多,x1越小越稀疏。

  • L2正则:
    在这里插入图片描述
    ∥ x ∥ 2 = x 1 2 + x 2 2 + ⋯ + x N 2 \|\mathbf{x}\|_2 = \sqrt{x_1^2 + x_2^2 + \cdots + x_N^2} x2=x12+x22++xN2

2. L1和L2的选择:

在这里插入图片描述
下面的图是一个L1和L2求解的结果,明显L1成功获得了真实解,L2失败。
在这里插入图片描述

三、压缩感知算法(Compressed Sensing)

根据正则的性质,我们已经知道可以获得这样的解选择技术。

  • 这时需要思考的问题是:我们真的需要稀疏解吗?真正的解是稀疏解吗?
    • 前者关注的是变量选择的问题。当我们对方程的真实解不感兴趣,而只是在寻找能满足方程的最少变量组合时,这是一个重要的问题。
    • 至于后者,当我们不是要选择变量而是要寻找真实解时,就需要考虑稀疏解是否合适。对于本质上具有稀疏解的方程问题,有选择性地找出稀疏解会产生巨大的效果。

压缩感知这个框架是利用正则的特性从欠定方程组中获得稀疏解,从而更准确地确定我们想要了解的内容。它就像信息科学中的名侦探。
特别是,通过L1范数最小化来估计原始信息的方法被称为基追踪(Basis Pursuit)。

1. 压缩感知的性质

当观测矩阵A的各分量从均值为0、方差为1的高斯分布生成时,以下列曲线为边界,在α较大且ρ较小的区域内,通过L1正则最小化可以以极高的概率成功恢复原始信号。其中α = M/N,ρ = K/NP,Q(t)是标准正态分布的尾部概率积分。
1 α = 1 + π 2 t e t 2 2 { 1 − 2 Q ( t ) } \frac{1}{\alpha} = 1 + \sqrt{\frac{\pi}{2}}te^{\frac{t^2}{2}}\{1-2Q(t)\} α1=1+2π te2t2{12Q(t)}
ρ 1 − ρ = 2 ( e − t 2 2 t 2 π − Q ( t ) ) \frac{\rho}{1-\rho} = 2\left(\frac{e^{-\frac{t^2}{2}}}{t\sqrt{2\pi}}-Q(t)\right) 1ρρ=2(t2π e2t2Q(t))
Q ( t ) = ∫ t ∞ e − x 2 2 2 π d x Q(t) = \int_t^{\infty}\frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}dx Q(t)=t2π e2x2dx
α = M N , ρ = K N \alpha = \frac{M}{N}, \quad \rho = \frac{K}{N} α=NM,ρ=NK

在这里插入图片描述

上图展示了压缩感知中L1正则最小化重构的可行性边界。让我详细解释一下:

  1. 坐标轴含义
  • 横轴 ρ = K/N:表示稀疏度(信号中非零元素的比例)
  • 纵轴 α = M/N:表示测量数与信号维度的比值(压缩比)
  1. 图中的区域
  • 蓝色区域:这是L1范数最小化能够成功重构原始信号的区域
    • 当(ρ,α)点落在这个区域内时,我们可以以很高的概率通过L1最小化重构出原始信号
    • 特别是在α较大(即测量数较多)且ρ较小(即信号较稀疏)的情况下,重构成功率最高
  1. 分界线
  • 实线曲线:表示L1重构的理论边界
  • 虚线 α = ρ:这条对角线表示测量数等于非零元素个数的情况
  1. 实际意义
  • 这个图帮助我们理解在给定信号稀疏度ρ的情况下,需要多少测量值(由α决定)才能成功重构
  • 在蓝色区域内,压缩感知是有效的,即可以用少量测量重构出原始信号
  • 区域外则表示测量数不足,无法保证信号重构的成功

这个图对于实际应用压缩感知非常有用,它可以帮助我们确定所需的最小测量数,以保证可以成功重构具有特定稀疏度的信号。下面这句话很重要,我说三遍。

  • 压缩感知,重要的不仅仅是选择稀疏解,关键在于不能仅仅是选择"差不多"解,还需要其中包含正确答案。
  • 压缩感知,重要的不仅仅是选择稀疏解,关键在于不能仅仅是选择"差不多"解,还需要其中包含正确答案。
  • 压缩感知,重要的不仅仅是选择稀疏解,关键在于不能仅仅是选择"差不多"解,还需要其中包含正确答案。

2. ISTA算法

ISTA是一个通过L1正则化,迭代求解欠定系统的算法,流程如下(证明自己网上可查):

  1. 令t = 0,初始化x[0]。例如可以设置 x [ 0 ] = A T y x[0] = A^T y x[0]=ATy

  2. 通过平方完成法求解g(x)的二次函数近似的顶点:
    v [ t ] = x [ t ] + ( 1 / L λ ) A T ( y − A x [ t ] ) v[t] = x[t] + (1/Lλ)A^T(y - Ax[t]) v[t]=x[t]+(1/Lλ)AT(yAx[t])

  3. 应用软阈值函数:
    x [ t + 1 ] = S 1 / L ( v [ t ] ) x[t+1] = S_{1/L}(v[t]) x[t+1]=S1/L(v[t])

  4. 重复步骤2-4直到满足终止条件。

四、Python实现

import numpy as np
import matplotlib.pyplot as plt
from openjij import SASampler
from IPython.display import clear_outputdef grad_comp(y, A, x):"""计算梯度Args:y: 观测值向量A: 测量矩阵x: 当前解向量Returns:grad: 梯度向量"""grad = -np.dot(A.T, (y - A.dot(x)))return graddef SoftThr(v, thr):"""软阈值函数实现Args:v: 输入向量thr: 阈值Returns:z: 经过软阈值处理的向量"""z = np.zeros(len(v))# 处理大于阈值的元素itemp = np.where(v > thr)z[itemp] = v[itemp] - thr# 处理小于-阈值的元素itemp = np.where(v <= -thr)z[itemp] = v[itemp] + thrreturn zdef opt_qvec(x, x0, y, A, Tall=10, p=10.0, flag=True):"""使用ADMM算法优化QUBO向量Args:x: 初始解向量x0: 目标解向量y: 观测值向量A: 测量矩阵Tall: 最大迭代次数p: ADMM惩罚参数flag: 是否显示优化过程图像Returns:x: 优化后的解向量"""N = A.shape[0]# 计算A的伪逆相关矩阵Atemp = A.dot(A.T)Ainv = np.linalg.inv(Atemp)Atemp = A.T.dot(Ainv)Nvec = len(x)# ADMM算法的辅助变量z = np.zeros(Nvec)u = np.zeros(Nvec)# ADMM迭代for t in range(Tall):# 更新xx = Atemp.dot(y) + (np.eye(Nvec) - Atemp.dot(A)).dot(z + u)# 更新z(软阈值步骤)z = SoftThr(x - u, 1/p)# 更新对偶变量uu = u + (z - x)# 如果需要,绘制优化过程if flag:clear_output(True)plt.plot(x)plt.plot(x0)plt.show()return xdef Xmat_make(x):"""构造QUBO问题的特征向量Args:x: 输入向量Returns:Xvec: 包含一阶项和二阶项的特征向量"""Ns = len(x)# 向量长度为一阶项数量加上二阶项数量Xvec = np.zeros(Ns + Ns*(Ns-1)//2)# 填充一阶项t = 0for i in range(Ns):Xvec[t] = x[i]t = t + 1# 填充二阶项(交互项)for i in range(Ns):for j in range(Ns):if i < j:Xvec[t] = x[i]*x[j]t = t + 1return Xvecdef ycomp(Xvec, Qvec):"""计算QUBO问题的能量Args:Xvec: 特征向量Qvec: QUBO系数向量Returns:Ene: 能量值"""Ene = np.dot(Xvec, Qvec)return Enedef QUBO_create(Qvec, Ns):"""从向量形式构造QUBO矩阵Args:Qvec: QUBO系数向量Ns: 系统大小Returns:QUBO: QUBO矩阵"""# 计算二阶项数量Noff = (Ns*(Ns-1))//2# 提取对角项(一阶项)和非对角项(二阶项)Qdiag = Qvec[:Ns]Qoff = Qvec[Ns:]# 构造QUBO矩阵QUBO = np.diag(Qdiag)# 填充非对角元素t = 0for i in range(Ns):for j in range(Ns):if i < j:QUBO[i,j] = Qoff[t]t = t + 1return QUBO# 主程序开始# 设置系统大小
Ns = 20# 生成随机的QUBO问题
# 生成对角项
Qdiag = np.random.randn(Ns)
QUBO = np.diag(Qdiag)# 生成稀疏的非对角项
Noff = (Ns*(Ns-1))//2
Qoff = np.random.randn(Noff)
rho = 0.2  # 稀疏度参数
mask = (np.random.rand(Noff) < rho)
Qoff = mask*Qoff# 合并对角项和非对角项
Qvec = np.concatenate((Qdiag,Qoff))# 生成训练数据
M = 100  # 训练样本数
Adata = []  # 特征矩阵
ydata = []  # 能量值# 随机生成训练样本
for d in range(M):# 生成随机二值向量x = (np.random.rand(Ns) > 0.5)x = x.astype(np.int16)# 计算特征向量和对应能量Xvec = Xmat_make(x)Ene = ycomp(Xvec,Qvec)Adata.append(Xvec)ydata.append(Ene)# 将数据转换为numpy数组
y = np.array(ydata)
A = np.array(Adata)# 使用ADMM算法学习QUBO参数
Nvec = Noff + Ns
Qinf = np.zeros(Nvec)
Qinf = opt_qvec(Qinf, Qvec, y, A, Tall=100)# 构造学习到的QUBO矩阵
QUBO = QUBO_create(Qinf, Ns)# 使用量子退火采样器求解QUBO问题
sampler = SASampler()
sampleset = sampler.sample_qubo(QUBO, num_reads=1)# 迭代优化过程
Ns = 20
Ndata = 5  # 初始数据点数
Nall = 195  # 总迭代次数# 初始化数据集
Adata = []
ydata = []for d in range(Ndata):x = (np.random.rand(Ns) > 0.5)x = x.astype(np.int16)Xvec = Xmat_make(x)Ene = ycomp(Xvec,Qvec)Adata.append(Xvec)ydata.append(Ene)# 记录优化过程中的能量
Enelist = []
Eneminlist = []
xlist = []
Qinf = np.dot(A.T,y)# 主优化循环
for d in range(Nall):# 更新QUBO参数y = np.array(ydata)A = np.array(Adata)Qinf = opt_qvec(Qinf, Qvec, y, A, Tall=10, flag=False)QUBO = QUBO_create(Qinf, Ns)# 使用量子退火采样器获得新解sampleset = sampler.sample_qubo(QUBO, num_reads=1)x = sampleset.record[0][0]# 检查是否重复解for xtemp in xlist:if np.array_equal(x,xtemp):x = (np.random.rand(Ns) > 0.5)x = x.astype(np.int16)breakxlist.append(x)# 计算新解的能量Xvec = Xmat_make(x)Ene = ycomp(Xvec,Qvec)Enelist.append(Ene)Enemin = np.min(Enelist)Eneminlist.append(Enemin)# 更新数据集ydata.append(Ene)Adata.append(Xvec)# 绘制优化过程clear_output(True)plt.plot(Enelist)plt.plot(Eneminlist)plt.show()

1. 代码和结果解释

1.1 代码细节

代码其实挺简化,但我们也可以从中看到一些细节:

  • Noff = int((Ns * (Ns - 1)) / 2) 计算了QUBO矩阵中非对角线的个数。
  • mask 的作用是只考虑稀疏的那些Qij。
  • np.random.rand(Ns) 在模拟实验中用于产生随机的01向量。
  • opt_qvec 是关键的函数,里面通过数据拟合Q矩阵,并用此Q矩阵进行退火优化。

1.2 总体思路回顾:

  1. 目标: 使用模拟退火算法(SA)或者量子退火算法(QA)来找到一个QUBO问题的最优解,但QUBO矩阵本身是未知的(“黑盒”)。
  2. 难点: QUBO矩阵是未知的,我们无法直接使用标准的退火方法。
  3. 解决方法: 使用压缩感知算法,逐步猜测和逼近真实的QUBO矩阵,并在这个过程中利用退火算法进行优化。
  4. 关键: 从客户(黑盒)那里获得数据,然后用这些数据来推断Q矩阵。

1.3 压缩感知算法的应用:

使用压缩感知算法的核心体现在opt_qvec函数内部和整个迭代过程中,它的思想是:

  1. 稀疏性假设: 假设QUBO矩阵是稀疏的(即有很多元素为零)。
  2. 数据采集: 通过不断询问(比如做问卷,问专家)黑盒获取数据,可以理解为通过不断迭代模拟退火算法来寻找更好的01向量。
  3. 逐步逼近: 使用采集到的数据,反推(拟合)出一个稀疏的QUBO矩阵。
  4. 更新和迭代: 然后使用这个推导出的Q矩阵进行退火,并继续这个采样拟合的过程,直到找到一个比较好的Q矩阵来推断。

1.4 最后的输出结果解读:
在这里插入图片描述

  • 最终图像部分
    • x轴表示退火优化的迭代步骤,y轴表示能量值。
    • 蓝色曲线:表示模拟退火算法在尝试优化(寻找更低的能量)过程中,每个采样点所对应的能量值
    • 橘色曲线:真实情况的能量值,用来对比模拟退火算法找到的解和真实解之间的差距。
  • 解读
    • 数据与优化协同作用: 这种蓝色线和黄色线的同步下降,生动地展示了压缩感知算法的核心——通过模拟退火(或量子退火)算法的优化搜索,不断引导QUBO矩阵的逼近,同时利用新的01向量的数据,使推导的矩阵越来越精确,最终在黑盒优化问题中找到好的解。
    • 蓝色尖峰出现: 蓝色线的尖峰,通常表示模拟退火算法在搜索过程中,随机尝试到了一个能量比较高的状态。这是退火算法的探索性的一部分,它会尝试从当前的局部最优解“跳出”,看看是否有更低的能量值。这种尖峰通常表示对目前解的否定。

四、总结

这个教程,真的是很直观地讲解了最先进的QUBO建模技术,以少见多。有什么问题,欢迎指正。
下一篇,更深入的讲解ISTA算法的升级版ADMM算法

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/64231.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【连续学习之SSL算法】2018年论文Selfless sequential learning

1 介绍 年份&#xff1a;2018 期刊&#xff1a; arXiv preprint Aljundi R, Rohrbach M, Tuytelaars T. Selfless sequential learning[J]. arXiv preprint arXiv:1806.05421, 2018. 本文提出了一种名为SLNID&#xff08;Sparse coding through Local Neural Inhibition and…

结构方程模型【SEM】:嵌套分层数据及数据分组分析

结构方程模型&#xff08;System of Equations Model&#xff0c;简称SEM&#xff09;&#xff0c;在生态学和环境科学中通常指的是一组描述生态系统中能量、物质和信息流动的数学方程。这些方程可以是确定性的&#xff0c;也可以是随机的&#xff0c;它们共同构成了一个模型&a…

hot100_56. 合并区间

以数组 intervals 表示若干个区间的集合&#xff0c;其中单个区间为 intervals[i] [starti, endi] 。 请你合并所有重叠的区间&#xff0c;并返回 一个不重叠的区间数组&#xff0c;该数组需恰好覆盖输入中的所有区间 。数据结构 二维链表存储每个区间 方法 先对每个区间的…

Python大数据:基于Python的王者荣耀战队数据分析系统的设计与实现

系统展示 比赛信息管理 看板展示 系统管理 摘要 本文使用Python与MYSQL技术搭建了一个王者荣耀战队的数据分析系统。对用户提出的功能进行合理分析&#xff0c;然后搭建开发平台以及配置计算机软硬件&#xff1b;通过对数据流图以及系统结构的设计&#xff0c;创建相应的数据…

两分钟解决:vscode卡在设置SSH主机,VS Code-正在本地初始化VSCode服务器

问题原因 remote-ssh还是有一些bug的&#xff0c;在跟新之后可能会一直加载初始化SSH主机解决方案 1.打开终端2.登录链接vscode的账号&#xff0c;到家目录下3.找到 .vscode-server文件,删掉这个文件4.重启 vscode 就没问题了

day26 文件io

函数接口 1 .open和close 文件描述符&#xff1a;系统为用open打开的文件分配的标识符 非负的整形数据 0-1023 最小未被使用原则 使用完时及时释放&#xff0c;避免文件描述符溢出 文件描述溢出就是文件使用完没有及时关闭文件 int open(const char *pathname, int flags); /…

Java Stream流详解——串行版

Stream流——串行版 ​ Stream流是java8引入的特性&#xff0c;极大的方便了我们对于程序内数据的操作&#xff0c;提高了性能。通过函数式编程解决复杂问题。 1.BaseStream<T,S extense BaseStream<T,S>> ​ 他是流处理的基石概念&#xff0c;重点不在于这个接…

el-backtop(返回顶部)

案例&#xff1a; <el-backtop target".app-main"><svg-icon icon-class"backtop" size"24px" /></el-backtop>

探秘“香水的 ChatGPT”:AI 开启嗅觉奇幻之旅!

你没有看错&#xff0c;AI也能闻到味道了&#xff01;这是一家名为Osmo公司公布的信息&#xff0c;他们成功创造出了由AI生成的李子味道&#xff0c;快跟着小编一探究竟吧~ 【图片来源于网络&#xff0c;侵删】 Osmo公司的这项技术&#xff0c;通过分析香味的化学成分和人类嗅…

电子配件行业的未来之路:产品说明书数字化转型的力量

在科技飞速发展的今天&#xff0c;电子配件行业作为科技创新的前沿阵地&#xff0c;正经历着前所未有的变革。从智能手机、平板电脑到智能穿戴设备&#xff0c;各种新型电子配件层出不穷&#xff0c;极大地丰富了人们的生活。然而&#xff0c;随着产品种类的增多和功能的复杂化…

Vscode + gdbserver远程调试开发板指南:

本章目录 步骤环境准备网络配置vscode配置步骤 (全图示例)开发板配置开始调试注意: 每次断开之后&#xff0c;开发板都需要重新启动gdbserver才可调试。 参考链接: 步骤 环境准备 将交叉编译链路径加入$PATH变量&#xff1a;确保系统能够找到所需的工具。 export PATH$PATH:/p…

对外发PDF设置打开次数

在线 Host PDF 文件并对链接进行限制——保障文件安全的最佳解决方案 在数字化办公和远程协作日益普及的今天&#xff0c;如何安全高效地分享 PDF 文件成为许多用户关注的重点。MaiPDF 作为一款功能强大的在线工具&#xff0c;不仅支持在线 host PDF 文件&#xff0c;还提供多…

VS2022 中的 /MT /MTd /MD /MDd 选项

我们有时编译时,需要配置这个 运行库,指定C/C++运行时库的链接方式。 如下图 那么这些选项的含义是什么? /MT:静态链接多线程库 /MT选项代表“Multi-threaded Static”,即多线程静态库。选择此选项时,编译器会从运行时库中选择多线程静态连接库来解释程序中的代码,…

MacOS下TestHubo安装配置指南

TestHubo是一款开源免费的测试管理工具&#xff0c; 下面介绍MacOS私有部署的安装与配置。TestHubo 私有部署版本更适合有严格数据安全要求的企业&#xff0c;支持在本地或专属服务器上运行&#xff0c;以实现对数据和系统的完全控制。 1、Mac 服务端安装 Mac安装包下载地址&a…

Amazon Bedrock 实践 - 利用 Llama 3.2 模型分析全球糖尿病趋势

黄浩文 资深开发者布道师 亚马逊云科技 拥有电信、互联网以及云计算等行业超过 20 年的丰富经验&#xff0c;曾任职于微软、Sun 和中国电信。他目前专注于生成式 AI、大型语言模型 (LLM)、机器学习和数据科学等领域的技术内容创作和实践分享&#xff0c;致力于赋能全球开发者。…

期权懂|如何计算期权卖方平仓后的盈利?

锦鲤三三每日分享期权知识&#xff0c;帮助期权新手及时有效地掌握即市趋势与新资讯&#xff01; 如何计算期权卖方平仓后的盈利&#xff1f; 期权卖方平仓后的盈利计算涉及多个因素&#xff0c;包括期权的交易价格、平仓价格以及权利金的变动等。 交易价格&#xff1a;期权卖…

【连续学习之VCL算法】2017年论文:Variational continual learning

1 介绍 年份&#xff1a;2017 期刊&#xff1a; arXiv preprint Nguyen C V, Li Y, Bui T D, et al. Variational continual learning[J]. arXiv preprint arXiv:1710.10628, 2017. 本文提出的算法是变分连续学习&#xff08;Variational Continual Learning, VCL&#xf…

多视图 (Multi-view) 与多模态 (Multi-modal)

多视图 (Multi-view) 与多模态 (Multi-modal) 是两种不同的数据处理方式&#xff0c;它们在机器学习和数据分析中有着重要的应用。尽管这两者有一些相似之处&#xff0c;但它们关注的角度和处理方法有所不同。 多视图 (Multi-view) 定义&#xff1a;多视图指的是同一数据对象…

【Transformer】深入浅出自注意力机制

写在前面&#xff1a;博主本人也是刚接触计算机视觉领域不久&#xff0c;本篇文章是为了记录自己的学习&#xff0c;大家一起学习&#xff0c;有问题欢迎大家指出。&#xff08;博主本人的习惯是看文章看到不懂的有立马去看不懂的那块&#xff0c;所以博文可能内容比较杂&#…

HarmonyOS NEXT 实战之元服务:静态案例效果---教育培训服务

背景&#xff1a; 前几篇学习了元服务&#xff0c;后面几期就让我们开发简单的元服务吧&#xff0c;里面丰富的内容大家自己加&#xff0c;本期案例 仅供参考 先上本期效果图 &#xff0c;里面图片自行替换 效果图1完整代码案例如下&#xff1a; import { authentication } …