分布式 Paxos算法 总结

前言


 相关系列

  • 《分布式 & 目录》
  • 《分布式 & Paxos算法 & 总结》
  • 《分布式 & Paxos算法 & 问题》
     

 参考文献

  • 《图解超难理解的 Paxos 算法(含伪代码)》
  • 《【超详细】分布式一致性协议 - Paxos》
     
     

Basic-Paxos @ 基础帕克索斯算法


    Paxos算法是目前公认解决分布式一致性问题的最有效算法之一,甚至可以说它是过去几十年里一切分布式一致性算法的源头。我们对Paxos算法进行描述时通常都会带上“容错&共识”两个关键字,那么它们具体代表的是什么呢?

  • 容错:是指分布式系统在部分节点宕机的情况下依然能够对外提供服务,即CAP理论中的分区容错性;
  • 共识:是指分布式系统的各节点都能就某个操作达成共识,即所有节点都批准执行这个操作。例如在分布式系统中操作A/B都想访问某服务,那么令集群中的所有(超半数/自定义数量)服务都批准执行操作A/B的的过程就是所谓的达成共识。
     

 概念

    在正式对流程进行阐述之前,我们需要先对Paxos算法的各类角色&变量进行讲解。Paxos算法具有四类角色…其名称/作用具体如下:

  • client @ 客户端:负责向提案者发送操作请求;
  • proposer @ 提案者:提案者负责接收&封装客户端的操作请求为proposal @ 提案,并为之生成全局唯一&增长的编号。随后向各接收者广播准备/接收请求,并根据其返回的通过/批准情况决定是否继续发送接收请求/判定其已达成一致;
  • acceptor @ 接收者:接收者负责对准备&接收请求中的提案进行判定,以决定是否通过/批准该提案;
  • learner @ 学习者:学习者负责获取已达成共识的提案并应用于分布式系统中。

    Paxos算法具有三类“持久化”变量…其名称/作用具体如下:

  • maxProposal @ 最大提案:接收者在准备请求中通过的最大提案编号;
  • acceptedProposal @ 已批准提案:接收者在接收请求中批准的最大提案编号;
  • acceptedValue @ 已批准值:接收者在接收请求中批准的最大提案值。
     

 流程

    Paxos算法的流程分为“批准/获取”两个部分,这其中“批准”部分负责提案的实际批准,具体又可分为“准备/接收”两个阶段;而“获取”部分则负责提案批准后的对外开放。关于提案批准的完整流程具体如下:

  • prepare @ 准备阶段:提案者在接收到客户端的操作请求后,其会将之封装为提案并为之生成全局唯一&增长的编号,关于全局编号的具体生成方式此处不予讨论;
  • 提案者会向各接收者广播(即全体发送)准备(当前提案编号)请求;
  • 各接收者在收到准备(当前提案编号)请求后会比较“当前提案编号”和“最大提案”的大小,如果“当前提案编号” > “最大提案”则记录“最大提案”为“当前提案编号”并返回通过回应。而如果该接收者曾chosen @ 选中/批准过某项提案,则“已批准提案/已批准值”会随通过回应一同返回;否则便会无视请求/返回拒绝回应。而在未能收到超过半数/自定义数量通过回应的情况下,提案者会为提案生成重新新编号并再次开始流程;
  • accept @ 接收阶段:提案者在收到超过半数/自定义数量的通过回应后会向接收者广播接收(当前提案编号&当前提案值)请求。如果在之前的准备请求回应中存在“已批准值”,那么在接收请求中携带的“当前提案值”就必须应用该值;否则就由当前提案者负责自定义。通过该规则可以得知:Paxos算法只支持单个值/操作的共识;
  • 各接收者在收到接收(当前提案编号&当前提案值)请求后会再次比较“当前提案编号”与“最大提案”的大小,如果“当前提案编号” >= “最大提案”则记录“已批准提案&已批准值”为“当前提案编号&当前提案值”,并将“当前提案编号”返回,意味着已批准当前提案;否则便将原本的“最大提案”返回;
  • 提案者在收到超过半数/自定义数量的“当前提案编号”后便会认为各接收者已对当前提案达成共识,至此该提案便可以被学习者所获取&应用于分布式系统了;否则便意味着当前提案被否决,提案者需要为提案重新生成新编号以再次开始流程。

    当提案达成共识后,如何让学习者获取该提案也是值得细究的问题。提案获取通常有以下几种方案:

  • 全量发送:接收者一旦批准提案便将该提案广播给所有学习者。这种做法虽然可以让学习者尽快的获得批准提案,但是却需要每个接收者与所有学习者逐一进行通信,通信次数为二者乘积,所以效率较低;
  • 主从同步:选定主学习者,提案批准后由接收者通知主学习者,并由主学习者负责通知其它的学习者。这个方案虽然多了一个步骤,但是通信次数大大降低,通信次数为学习者的数量。该方案同时引出另一个问题:主学习者随时可能出现故障。
  • 多主从同步:在主从同步的基础上,由单个主学习者扩展成一个主学习者集合。集合中学习者数量越高,可靠性也越好。
     

 模拟

    为了更好的熟悉Paxos算法,此处我们举例描述Paxos算法“提案批准”的完整过程,该案例中的Paxos集群共有A/B/C三个节点。注意!这里的任意节点都可同时扮演提案者&接收者。

    提案者A/B分别将X赋值成3/5的操作请求封装为提案,并为之生成全局唯一&增长的编号1/2,随后向各接收者广播。在准备阶段它们的交互结果如下:

在这里插入图片描述

  • 提案者A/B分别进入准备阶段,并向各接收者广播准备(1/2)请求;
  • 接收者A/B在收到提案者A的准备(1)请求后发现自身并没有通过/批准任何准备/接收请求,因此直接返回空的通过回应;
  • 接收者C由于在收到&通过提案者B的准备(2)请求之后再收到提案者A的准备(1)请求,并且提案者B的提案编号2大于提案者A的提案编号1,因此无视了准备(1)请求/返回了拒绝回应;
  • 接收者A/B在收到提案者B的准备(2)请求后由于其提案编号2 > 已通过的提案编号1,因此两者都会返回空的通过回应。

    由于提案者A/B的准备请求都收到了超过半数的通过回应,因此提案者A/B都将进入Paxos算法的接收阶段。

在这里插入图片描述

  • 提案者A向各接收者广播接收(1&3)请求。由于之前的通过回应中没有携带“已批准提案”,因此提案的值可以完全自定义;
  • 接收者A/B/C在收到接收(1&3)请求后,由于其之前已经各自通过了准备(2)请求,因此其都会返回提案编号2来表示未曾批准该请求;
  • 提案者A在收到回应后发现提案编号2比自己的提案编号1大,因此知晓自身提案未曾被批准,因此重新回到准备阶段进行协商;
  • 提案者B向各接收者广播接收(2&5)请求。由于之前的通过回应中没有携带“已批准提案”,因此提案的值可以完全自定义;
  • 接收者A/B/C在收到接收(2&5)请求后,由于其都未通过提案编号更大的准备请求,因此其都会返回提案编号2来表示批准了该请求;
  • 提案者B在收到回应后发现提案编号2与自身提案编号相同且数量超过半数,因此判定接收者对该提案已达成共识,学习者可正式获取&应用该提案。

    在提案批准的流程中还有一种常见的情况是接收者在已批准某项提案的情况下收到提案编号更大的准备请求,这种情况下其就需要在通过回应中返回已批准提案的编号&值…模拟如下:

在这里插入图片描述

  • 提案者B向各接收者广播接收(3&6)请求;
  • 接收者A收到&批准了提案者B的接收(3&6)请求;
  • 提案者A向各接收者广播准备(4)请求;
  • 接收者B/C收到&通过提案者A的广播准备(4)请求,并因此未批准提案者B的接收(3&6)请求;
  • 接收者A收到&通过提案者A的准备(4)请求,并在通过回应中携带了已批准提案编号&值(3&6);
  • 提案者B判定接收者未能就提案达成共识,重新进入准备阶段;
  • 提案者A因为收到超过半数的通过请求而进入接收阶段,向各接收者广播接收(4&6)请求。这其中6是因为在之前接收者A的通过回应中包含有已批准提案值,因此该值便被作为了提案者A的提案值;
  • 接收者A/B/C收到&批准了接收(4&6)请求,提案者A判定各接收者已就该提案达成共识。
     
     

Multi-Paxos算法 @ 多帕克索斯算法


    原始的Basic-Paxos算法只能达成一个值/操作的共识,而Leslie Lamport则提出可以通过多次执行Basic-Paxos算法来达成一系列值/操作的共识。但由于多次协商会增加通信开销&影响协商活性(即指协商进入死循环),因此Leslie Lamport则进一步提出了名为Multi-Paxos算法的解决方案。

    Multi-Paxos算法对于Basic-Paxos算法的主要区别在于其引入了领导提案者的概念。在Multi-Paxos算法中,提案(准备&接收)请求的发送是由领导提案者专属负责的。Multi-Paxos系统会在启动时先通过Basic-Paxos算法从各提案者中选举出唯一的领导提案者用于“串行”发送提案请求,这样就能避免并发提交而解决Basic-Paxos算法的活锁(接收者不断通过编号更大的提案而导致无法批准已通过的旧提案,该问题正常情况下可通过随机延迟的方式进行缓解)问题。此外由于领导提案者会连续发送提案请求,因此除去首个提案请求需要完整执行准备&接收两个阶段(为了应对网络分区而保留,否则也可以不执行)外,后续提案请求的发送都可以只执行接收阶段,从而便能减少RPC来提升共识的达成效率。

    Multi-Paxos算法可以支持多领导提案者并存的场景。在实际的Multi-Paxos系统中,由于网络分区情况的存在,其可能出现选举出多个领导提案者的情况。对于这种情况Multi-Paxos算法是提供支持的,因为如此一来其会自动退化成Basic-Paxos算法的多次执行场景。

    领导提案者的宕机会导致Multi-Paxos系统不可用。对于一个功能完善的Multi-Paxos系统,其应该具备对领导提案者的故障监测&转移功能。理论上,领导提案者需要不断向系统中的其它节点发送心跳以表示自身存活,而一旦在指定时间内未收到心跳(及一系列综合性盘点),那么Multi-Paxos系统就会判定领导提案者已经宕机。这种情况下其就会选举新的领导提案者来代替工作,即使旧领导提案者只是因为网络分区而无法连接。而在不存在可用提案者的情况下,Multi-Paxos系统将陷入不可用的状态。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/62969.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Git-基础操作命令

目录 Git基础操作命令 case *查看提交日志 log 版本回退 get add . Git基础操作命令 我们创建并且初始化这个仓库以后,我们就要在里面进行操作。 Git 对于文件的增删改查存在几个状态,这些修改状态会随着我们执行Git的命令而发生变化。 untracked、…

配置mysqld(读取选项内容,基本配置),数据目录(配置的必要性,目录下的内容,具体文件介绍,修改配置)

目录 配置mysqld 读取选项内容 介绍 启动脚本 基本配置 内容 端口号 数据目录的路径 配置的必要性 配置路径 mysql数据目录 具体文件 修改配置时 权限问题 配置mysqld 读取选项内容 介绍 会从[mysqld] / [server] 节点中读取选项内容 优先读取[server] 虽然服务…

智能家居WTR096-16S录放音芯片方案,实现语音播报提示及录音留言功能

前言: 在当今社会的高速运转之下,夜幕低垂之时,许多辛勤工作的父母尚未归家。对于肩负家庭责任的他们而言,确保孩童按时用餐与居家安全成为心头大事。此时,家居留言录音提示功能应运而生,恰似家中的一位无形…

pytorch bilstm crf的教程,注意 这里不支持批处理,要支持批处理 用torchcrf这个。

### Bi-LSTM Conditional Random Field ### pytorch tutorials https://pytorch.org/tutorials/beginner/nlp/advanced_tutorial.html ### 模型主要结构: ![title](sources/bilstm.png) pytorch bilstm crf的教程,注意 这里不支持批处理 Python version…

【SickOs1.1靶场渗透】

文章目录 一、基础信息 二、信息收集 三、反弹shell 四、提权 一、基础信息 Kali IP:192.168.20.146 靶机IP:192.168.20.150 二、信息收集 端口扫描 nmap -sS -sV -p- -A 192.168.20.150 开放了22、3128端口,8080端口显示关闭 22端…

【HF设计模式】03-装饰者模式

声明:仅为个人学习总结,还请批判性查看,如有不同观点,欢迎交流。 摘要 《Head First设计模式》第3章笔记:结合示例应用和代码,介绍装饰者模式,包括遇到的问题、遵循的 OO 原则、达到的效果。 …

ChatGPT生成测试用例的最佳实践(一)

前面介绍的案例主要展示了ChatGPT在功能、安全和性能测试用例生成方面的应用和成果。通过ChatGPT生成测试用例,测试团队不仅可以提升工作效率,还可以加快测试工作的速度,尽早发现被测系统中的问题。问题及早发现有助于提高软件的质量和用户满…

基于Redis实现令牌桶算法

基于Redis实现令牌桶算法 令牌桶算法算法流程图优点缺点 实现其它限流算法 令牌桶算法 令牌桶是一种用于分组交换和电信网络的算法。它可用于检查数据包形式的数据传输是否符合定义的带宽和突发性限制(流量不均匀或变化的衡量标准)。它还可以用作调度算…

操作系统(8)死锁

一、概念 死锁是指在一个进程集合中的每个进程都在等待只能由该集合中的其他进程才能引起的事件,而无限期地僵持下去的局面。在多任务环境中,由于资源分配不当,导致两个或多个进程在等待对方释放资源时陷入无限等待的状态,这就是死…

Micropython 扩展C模块<HelloWorld>

开发环境 MCU:Pico1(无wifi版)使用固件:自编译版本开发环境:MacBook Pro Sonoma 14.5开发工具:Thonny 4.1.6开发语言:MicroPython 1.24 执行示例 在github上获取micropython,我使…

解决Logitech G hub 无法进入一直转圈的方案(2024.12)

如果你不是最新版本无法加载尝试以下方案:删除AppData 文件夹下的logihub文件夹 具体路径:用户名根据实际你的请情况修改 C:\Users\Administrator\AppData\Local 如果你有通过lua编译脚本,记得备份!! ↓如果你是最新…

【记录49】vue2 vue-office在线预览 docx、pdf、excel文档

vue2 在线预览 docx、pdf、excel文档 docx npm install vue-office/docx vue-demi0.14.6 指定版本 npm install vue-office/docx vue-demi <template><VueOfficeDocx :src"pdf" style"height: 100vh;" rendere"rendereHandler" error&…

MVC模式的理解和实践

在软件开发中&#xff0c;MVC&#xff08;Model-View-Controller&#xff09;模式是一种经典的设计模式&#xff0c;特别适用于构建用户界面复杂的Web应用程序。MVC通过将应用程序的业务逻辑、数据显示和用户交互分离&#xff0c;使代码结构更加清晰&#xff0c;易于维护和扩展…

[A-22]ARMv8/v9-SMMU多级页表架构

ver0.1 [看前序文章有惊喜,关注W\X\G=Z+H=“浩瀚架构师”,可以解锁全部文章] 前言 前文我们对SMMU的系统架构和基本功能做了简要的介绍,现在大家大致对SMMU在基于ARM体系的系统架构下的总线位置和产品形态有了基本的了解。这里我们还是简单做个前情回顾,从总线架构角度看…

【UE5 “RuntimeLoadFbx”插件】运行时加载FBX模型

前言 为了解决在Runtime时能够直接根据FBX模型路径直接加载FBX的问题&#xff0c;推荐一款名为“RuntimeLoadFBX”的插件。 用法 插件用法如下&#xff0c;只需要指定fbx的地址就可以在场景中生成Actor模型 通过指定输入参数“Cal Collision”来设置FBX模型的碰撞 还可以通过…

精品基于Python实现的微信小程序校园导航系统-微信小程序

[含文档PPT源码等] [包运行成功永久免费答疑辅导] 《django微信小程序校园导航系统》该项目采用技术Python的django框架、mysql数据库 &#xff0c;项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、核心代码介绍视频等 软件开发环境及开发工具&#xf…

Rstudio-server的安装、配置、维护

一、安装Rstudio-server (1)安装R语言&#xff1a; sudo apt install r-base # 如果没有管理员权限无法操作 # 这样装上R默认在/usr/bin/R其实基本上的流程都可以参考posit的官网&#xff08;也就是Rstudio的官网&#xff09;&#xff1a; https://posit.co/download/rstudio…

Python序列的应用(八):元组、字典

前言&#xff1a;在Python编程语言中&#xff0c;序列是一种非常重要的数据结构&#xff0c;它允许我们存储和操作有序的数据集合。在前几期的内容中&#xff0c;我们已经探讨了列表&#xff08;List&#xff09;和集合&#xff08;Set&#xff09;这两种序列的应用&#xff0c…

OpenCV 功能函数介绍

一&#xff0c; 二值化函数 功能&#xff1a; 用于对图像进行二值化处理 参数&#xff1a; cv2.threshold(输入你的图像所对应的灰度图&#xff0c; 阈值&#xff1a;是浮点还是整数取决予图像的数据类型 最大值;高于阈值的像素值&#xff0c; 阈值类型&#xff1a;cv2.THR…

【Python】使用Selenium的find_element模块获取网页上的大段文字和表格的方法(建议收藏!)

发现了一个使用Selenium的find_element模块&#xff0c;快速获取文字和表格的方法&#xff0c;很实在&#xff0c;以后爬网的时候&#xff0c;就不用beautifulSoup 和 pandas的read_html 混起来用了&#xff01; 文字部分&#xff1a;实现网络节点下&#xff0c;某个节点下的其…