pytorch bilstm crf的教程,注意 这里不支持批处理,要支持批处理 用torchcrf这个。

### Bi-LSTM Conditional Random Field
### pytorch tutorials https://pytorch.org/tutorials/beginner/nlp/advanced_tutorial.html
### 模型主要结构:
![title](sources/bilstm.png)

pytorch bilstm crf的教程,注意 这里不支持批处理

Python version: 3.7.4 (default, Aug 13 2019, 20:35:49) [GCC 7.3.0]

Torch version: 1.4.0

# Author: Robert Guthrieimport torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optimtorch.manual_seed(1)
def argmax(vec):# return the argmax as a python int# 返回vec的dim为1维度上的最大值索引_, idx = torch.max(vec, 1)return idx.item()def prepare_sequence(seq, to_ix):# 将句子转化为IDidxs = [to_ix[w] for w in seq]return torch.tensor(idxs, dtype=torch.long)# Compute log sum exp in a numerically stable way for the forward algorithm
# 前向算法是不断累积之前的结果,这样就会有个缺点
# 指数和累积到一定程度后,会超过计算机浮点值的最大值,变成inf,这样取log后也是inf
# 为了避免这种情况,用一个合适的值clip去提指数和的公因子,这样就不会使某项变得过大而无法计算
# SUM = log(exp(s1)+exp(s2)+...+exp(s100))
#     = log{exp(clip)*[exp(s1-clip)+exp(s2-clip)+...+exp(s100-clip)]}
#     = clip + log[exp(s1-clip)+exp(s2-clip)+...+exp(s100-clip)]
# where clip=max
def log_sum_exp(vec):max_score = vec[0, argmax(vec)]max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1])return max_score + torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))class BiLSTM_CRF(nn.Module):def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):super(BiLSTM_CRF, self).__init__()self.embedding_dim = embedding_dim    # word embedding dimself.hidden_dim = hidden_dim          # Bi-LSTM hidden dimself.vocab_size = vocab_size          self.tag_to_ix = tag_to_ixself.tagset_size = len(tag_to_ix)self.word_embeds = nn.Embedding(vocab_size, embedding_dim)self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2,num_layers=1, bidirectional=True)# Maps the output of the LSTM into tag space.# 将BiLSTM提取的特征向量映射到特征空间,即经过全连接得到发射分数self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)# Matrix of transition parameters.  Entry i,j is the score of transitioning *to* i *from* j.# 转移矩阵的参数初始化,transitions[i,j]代表的是从第j个tag转移到第i个tag的转移分数self.transitions = nn.Parameter(torch.randn(self.tagset_size, self.tagset_size))# These two statements enforce the constraint that we never transfer# to the start tag and we never transfer from the stop tag# 初始化所有其他tag转移到START_TAG的分数非常小,即不可能由其他tag转移到START_TAG# 初始化STOP_TAG转移到所有其他tag的分数非常小,即不可能由STOP_TAG转移到其他tagself.transitions.data[tag_to_ix[START_TAG], :] = -10000self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000self.hidden = self.init_hidden()def init_hidden(self):# 初始化LSTM的参数return (torch.randn(2, 1, self.hidden_dim // 2),torch.randn(2, 1, self.hidden_dim // 2))def _get_lstm_features(self, sentence):# 通过Bi-LSTM提取特征self.hidden = self.init_hidden()# 因此,embeds 的最终数据形式是一个三维张量,形状为 (seq_len, 1, embed_dim),其中:#     seq_len 是句子的长度(即单词的数量)。#    1 表示批次大小,表明当前处理的是单个句子。#    embed_dim 是每个单词的嵌入向量维度。#    这种形状非常适合直接传递给 PyTorch 的 LSTM 层进行处理,因为 LSTM 层期望输入有三个维度,分别对应序列长度#   、批次大小和特征数(或输入大小)。如果你希望模型能够处理多个句子(即更大的批次),你应该相应地调整代码,#   使得 sentence 可以同时包含多条序列,并且批次大小不固定为1。embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)lstm_out, self.hidden = self.lstm(embeds, self.hidden)lstm_out = lstm_out.view(len(sentence), self.hidden_dim)lstm_feats = self.hidden2tag(lstm_out)return lstm_featsdef _score_sentence(self, feats, tags):# Gives the score of a provided tag sequence# 计算给定tag序列的分数,即一条路径的分数score = torch.zeros(1)tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags])for i, feat in enumerate(feats):# 递推计算路径分数:转移分数 + 发射分数score = score + self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]return scoredef _forward_alg(self, feats):# Do the forward algorithm to compute the partition function# 通过前向算法递推计算init_alphas = torch.full((1, self.tagset_size), -10000.)# START_TAG has all of the score.# 初始化step 0即START位置的发射分数,START_TAG取0其他位置取-10000init_alphas[0][self.tag_to_ix[START_TAG]] = 0.# Wrap in a variable so that we will get automatic backprop# 将初始化START位置为0的发射分数赋值给previousprevious = init_alphas# Iterate through the sentence# 迭代整个句子for obs in feats:# The forward tensors at this timestep# 当前时间步的前向tensoralphas_t = []for next_tag in range(self.tagset_size):# broadcast the emission score: it is the same regardless of the previous tag# 取出当前tag的发射分数,与之前时间步的tag无关emit_score = obs[next_tag].view(1, -1).expand(1, self.tagset_size)# the ith entry of trans_score is the score of transitioning to next_tag from i# 取出当前tag由之前tag转移过来的转移分数trans_score = self.transitions[next_tag].view(1, -1)# The ith entry of next_tag_var is the value for the edge (i -> next_tag) before we do log-sum-exp# 当前路径的分数:之前时间步分数 + 转移分数 + 发射分数next_tag_var = previous + trans_score + emit_score# The forward variable for this tag is log-sum-exp of all the scores.# 对当前分数取log-sum-expalphas_t.append(log_sum_exp(next_tag_var).view(1))# 更新previous 递推计算下一个时间步previous = torch.cat(alphas_t).view(1, -1)# 考虑最终转移到STOP_TAGterminal_var = previous + self.transitions[self.tag_to_ix[STOP_TAG]]# 计算最终的分数scores = log_sum_exp(terminal_var)return scoresdef _viterbi_decode(self, feats):backpointers = []# Initialize the viterbi variables in log space# 初始化viterbi的previous变量init_vvars = torch.full((1, self.tagset_size), -10000.)init_vvars[0][self.tag_to_ix[START_TAG]] = 0previous = init_vvarsfor obs in feats:# holds the backpointers for this step# 保存当前时间步的回溯指针bptrs_t = []# holds the viterbi variables for this step# 保存当前时间步的viterbi变量viterbivars_t = []  for next_tag in range(self.tagset_size):# next_tag_var[i] holds the viterbi variable for tag i at the# previous step, plus the score of transitioning# from tag i to next_tag.# We don't include the emission scores here because the max# does not depend on them (we add them in below)# 维特比算法记录最优路径时只考虑上一步的分数以及上一步tag转移到当前tag的转移分数# 并不取决与当前tag的发射分数next_tag_var = previous + self.transitions[next_tag]best_tag_id = argmax(next_tag_var)bptrs_t.append(best_tag_id)viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))# Now add in the emission scores, and assign forward_var to the set# of viterbi variables we just computed# 更新previous,加上当前tag的发射分数obsprevious = (torch.cat(viterbivars_t) + obs).view(1, -1)# 回溯指针记录当前时间步各个tag来源前一步的tagbackpointers.append(bptrs_t)# Transition to STOP_TAG# 考虑转移到STOP_TAG的转移分数terminal_var = previous + self.transitions[self.tag_to_ix[STOP_TAG]]best_tag_id = argmax(terminal_var)path_score = terminal_var[0][best_tag_id]# Follow the back pointers to decode the best path.# 通过回溯指针解码出最优路径best_path = [best_tag_id]# best_tag_id作为线头,反向遍历backpointers找到最优路径for bptrs_t in reversed(backpointers):best_tag_id = bptrs_t[best_tag_id]best_path.append(best_tag_id)# Pop off the start tag (we dont want to return that to the caller)# 去除START_TAGstart = best_path.pop()assert start == self.tag_to_ix[START_TAG]  # Sanity checkbest_path.reverse()return path_score, best_pathdef neg_log_likelihood(self, sentence, tags):# CRF损失函数由两部分组成,真实路径的分数和所有路径的总分数。# 真实路径的分数应该是所有路径中分数最高的。# log真实路径的分数/log所有可能路径的分数,越大越好,构造crf loss函数取反,loss越小越好feats = self._get_lstm_features(sentence)forward_score = self._forward_alg(feats)gold_score = self._score_sentence(feats, tags)return forward_score - gold_scoredef forward(self, sentence):  # dont confuse this with _forward_alg above.# Get the emission scores from the BiLSTM# 通过BiLSTM提取发射分数lstm_feats = self._get_lstm_features(sentence)# Find the best path, given the features.# 根据发射分数以及转移分数,通过viterbi解码找到一条最优路径score, tag_seq = self._viterbi_decode(lstm_feats)return score, tag_seqSTART_TAG = "<START>"
STOP_TAG = "<STOP>"
EMBEDDING_DIM = 5
HIDDEN_DIM = 4# Make up some training data
# 构造一些训练数据
training_data = [("the wall street journal reported today that apple corporation made money".split(),"B I I I O O O B I O O".split()
), ("georgia tech is a university in georgia".split(),"B I O O O O B".split()
)]word_to_ix = {}
for sentence, tags in training_data:for word in sentence:if word not in word_to_ix:word_to_ix[word] = len(word_to_ix)tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4}model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)# Check predictions before training
# 训练前检查模型预测结果
with torch.no_grad():precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long)print(model(precheck_sent))# Make sure prepare_sequence from earlier in the LSTM section is loaded
for epoch in range(300):  # again, normally you would NOT do 300 epochs, it is toy datafor sentence, tags in training_data:# Step 1. Remember that Pytorch accumulates gradients.# We need to clear them out before each instance# 第一步,pytorch梯度累积,需要清零梯度model.zero_grad()# Step 2. Get our inputs ready for the network, that is,# turn them into Tensors of word indices.# 第二步,将输入转化为tensorssentence_in = prepare_sequence(sentence, word_to_ix)targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long)# Step 3. Run our forward pass.# 进行前向计算,取出crf lossloss = model.neg_log_likelihood(sentence_in, targets)# Step 4. Compute the loss, gradients, and update the parameters by# calling optimizer.step()# 第四步,计算loss,梯度,通过optimier更新参数loss.backward()optimizer.step()# Check predictions after training
# 训练结束查看模型预测结果,对比观察模型是否学到
with torch.no_grad():precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)print(model(precheck_sent))
# We got it!

改成批处理关键代码  previous_score = score[t - 1].view(batch_size, -1, 1)

def viterbi_decode(self, h: FloatTensor, mask: BoolTensor) -> List[List[int]]:"""decode labels using viterbi algorithm:param h: hidden matrix (batch_size, seq_len, num_labels):param mask: mask tensor of each sequencein mini batch (batch_size, batch_size):return: labels of each sequence in mini batch"""batch_size, seq_len, _ = h.size()# prepare the sequence lengths in each sequenceseq_lens = mask.sum(dim=1)# In mini batch, prepare the score# from the start sequence to the first labelscore = [self.start_trans.data + h[:, 0]]path = []for t in range(1, seq_len):# extract the score of previous sequence# (batch_size, num_labels, 1)previous_score = score[t - 1].view(batch_size, -1, 1)# extract the score of hidden matrix of sequence# (batch_size, 1, num_labels)h_t = h[:, t].view(batch_size, 1, -1)# extract the score in transition# from label of t-1 sequence to label of sequence of t# self.trans_matrix has the score of the transition# from sequence A to sequence B# (batch_size, num_labels, num_labels)score_t = previous_score + self.trans_matrix + h_t# keep the maximum value# and point where maximum value of each sequence# (batch_size, num_labels)best_score, best_path = score_t.max(1)score.append(best_score)path.append(best_path)

torchcrf 使用 支持批处理,torchcrf的简单使用-CSDN博客文章浏览阅读9.7k次,点赞5次,收藏33次。本文介绍了如何在PyTorch中安装和使用TorchCRF库,重点讲解了CRF模型参数设置、自定义掩码及损失函数的计算。作者探讨了如何将CRF的NLL损失与交叉熵结合,并通过自适应权重优化训练过程。虽然在单任务中效果不显著,但对于多任务学习提供了有价值的方法。https://blog.csdn.net/csdndogo/article/details/125541213

torchcrf的简单使用-CSDN博客

为了防止文章丢失 ,吧内容转发在这里

https://blog.csdn.net/csdndogo/article/details/125541213

. 安装torchcrf,模型使用
安装:pip install TorchCRF
CRF的使用:在官网里有简单的使用说明
注意输入的格式。在其他地方下载的torchcrf有多个版本,有些版本有batch_first参数,有些没有,要看清楚有没有这个参数,默认batch_size是第一维度。
这个代码是我用来熟悉使用crf模型和损失函数用的,模拟多分类任务输入为随机数据和随机标签,所以最后的结果预测不能很好的跟标签对应。

import torch
import torch.nn as nn
import numpy as np
import random
from TorchCRF import CRF
from torch.optim import Adam
seed = 100

def seed_everything(seed=seed):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True

num_tags = 5
model = CRF(num_tags, batch_first=True)  # 这里根据情况而定
seq_len = 3
batch_size = 50
seed_everything()
trainset = torch.randn(batch_size, seq_len, num_tags)  # features
traintags = (torch.rand([batch_size, seq_len])*4).floor().long()  # (batch_size, seq_len)
testset = torch.randn(5, seq_len, num_tags)  # features
testtags = (torch.rand([5, seq_len])*4).floor().long()  # (batch_size, seq_len)

# 训练阶段
for e in range(50):
    optimizer = Adam(model.parameters(), lr=0.05)
    model.train()
    optimizer.zero_grad()
    loss = -model(trainset, traintags)
    print('epoch{}: loss score is {}'.format(e, loss))
    loss.backward()
    torch.nn.utils.clip_grad_norm_(model.parameters(),5)
    optimizer.step()

#测试阶段
model.eval()
loss = model(testset, testtags)
model.decode(testset)


1.1模型参数,自定义掩码mask注意事项
def forward(self, emissions, labels: LongTensor, mask: BoolTensor) 
1
分别为发射矩阵(各标签的预测值),标签,掩码(注意这里的mask类型为BoolTensor)
注意:此处自定义mask掩码时,使用LongTensor类型的[1,1,1,1,0,0]会报错,需要转换成ByteTensor,下面是一个简单的获取mask的函数,输入为标签数据:

    def get_crfmask(self, labels):
        crfmask = []
        for batch in labels:
            res = [0 if d == -1 else 1 for d in batch]
            crfmask.append(res)
        return torch.ByteTensor(crfmask)


运行运行
2. CRF的损失函数是什么?
损失函数由真实转移路径值和所有可能情况路径转移值两部分组成,损失函数的公式为

分子为真实转移路径值,分母为所有路径总分数,上图公式在crf原始代码中为:

    def forward(
        self, h: FloatTensor, labels: LongTensor, mask: BoolTensor) -> FloatTensor:

        log_numerator = self._compute_numerator_log_likelihood(h, labels, mask)
        log_denominator = self._compute_denominator_log_likelihood(h, mask)

        return log_numerator - log_denominator

CRF损失函数值为负对数似然函数(NLL),所以如果原来的模型损失函数使用的是交叉熵损失函数,两个损失函数相加时要对CRF返回的损失取负。

    loss = -model(trainset, traintags)
1
3. 如何联合CRF的损失函数和自己的网络模型的交叉熵损失函数进行训练?
我想在自己的模型上添加CRF,就需要联合原本的交叉熵损失函数和CRF的损失函数,因为CRF输出的时NLL,所以在模型在我仅对该损失函数取负之后和原先函数相加。

        loss2 = -crf_layer(log_prob, label, mask=crfmask)
        loss1 = loss_function(log_prob.permute(0, 2, 1), label)
        loss = loss1 + loss2
        loss.backward()

缺陷: 效果不佳,可以尝试对loss2添加权重。此处贴一段包含两个损失函数的自适应权重训练的函数。

3.1.自适应损失函数权重
由于CRF返回的损失与原来的损失数值不在一个量级,所以产生了自适应权重调整两个权重的大小来达到优化的目的。自适应权重原本属于多任务学习部分,未深入了解,代码源自某篇复现论文的博客。

class AutomaticWeightedLoss(nn.Module):
    def __init__(self, num=2):
        super(AutomaticWeightedLoss, self).__init__()
        params = torch.ones(num, requires_grad=True)
        self.params = torch.nn.Parameter(params)

    def forward(self, *x):
        loss_sum = 0
        for i, loss in enumerate(x):
            loss_sum += 0.5 / (self.params[i] ** 2) * loss + torch.log(1 + self.params[i] ** 2)
        return loss_sum

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/62963.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【SickOs1.1靶场渗透】

文章目录 一、基础信息 二、信息收集 三、反弹shell 四、提权 一、基础信息 Kali IP&#xff1a;192.168.20.146 靶机IP&#xff1a;192.168.20.150 二、信息收集 端口扫描 nmap -sS -sV -p- -A 192.168.20.150 开放了22、3128端口&#xff0c;8080端口显示关闭 22端…

【HF设计模式】03-装饰者模式

声明&#xff1a;仅为个人学习总结&#xff0c;还请批判性查看&#xff0c;如有不同观点&#xff0c;欢迎交流。 摘要 《Head First设计模式》第3章笔记&#xff1a;结合示例应用和代码&#xff0c;介绍装饰者模式&#xff0c;包括遇到的问题、遵循的 OO 原则、达到的效果。 …

ChatGPT生成测试用例的最佳实践(一)

前面介绍的案例主要展示了ChatGPT在功能、安全和性能测试用例生成方面的应用和成果。通过ChatGPT生成测试用例&#xff0c;测试团队不仅可以提升工作效率&#xff0c;还可以加快测试工作的速度&#xff0c;尽早发现被测系统中的问题。问题及早发现有助于提高软件的质量和用户满…

基于Redis实现令牌桶算法

基于Redis实现令牌桶算法 令牌桶算法算法流程图优点缺点 实现其它限流算法 令牌桶算法 令牌桶是一种用于分组交换和电信网络的算法。它可用于检查数据包形式的数据传输是否符合定义的带宽和突发性限制&#xff08;流量不均匀或变化的衡量标准&#xff09;。它还可以用作调度算…

操作系统(8)死锁

一、概念 死锁是指在一个进程集合中的每个进程都在等待只能由该集合中的其他进程才能引起的事件&#xff0c;而无限期地僵持下去的局面。在多任务环境中&#xff0c;由于资源分配不当&#xff0c;导致两个或多个进程在等待对方释放资源时陷入无限等待的状态&#xff0c;这就是死…

Micropython 扩展C模块<HelloWorld>

开发环境 MCU&#xff1a;Pico1&#xff08;无wifi版&#xff09;使用固件&#xff1a;自编译版本开发环境&#xff1a;MacBook Pro Sonoma 14.5开发工具&#xff1a;Thonny 4.1.6开发语言&#xff1a;MicroPython 1.24 执行示例 在github上获取micropython&#xff0c;我使…

解决Logitech G hub 无法进入一直转圈的方案(2024.12)

如果你不是最新版本无法加载尝试以下方案&#xff1a;删除AppData 文件夹下的logihub文件夹 具体路径&#xff1a;用户名根据实际你的请情况修改 C:\Users\Administrator\AppData\Local 如果你有通过lua编译脚本&#xff0c;记得备份&#xff01;&#xff01; ↓如果你是最新…

【记录49】vue2 vue-office在线预览 docx、pdf、excel文档

vue2 在线预览 docx、pdf、excel文档 docx npm install vue-office/docx vue-demi0.14.6 指定版本 npm install vue-office/docx vue-demi <template><VueOfficeDocx :src"pdf" style"height: 100vh;" rendere"rendereHandler" error&…

MVC模式的理解和实践

在软件开发中&#xff0c;MVC&#xff08;Model-View-Controller&#xff09;模式是一种经典的设计模式&#xff0c;特别适用于构建用户界面复杂的Web应用程序。MVC通过将应用程序的业务逻辑、数据显示和用户交互分离&#xff0c;使代码结构更加清晰&#xff0c;易于维护和扩展…

[A-22]ARMv8/v9-SMMU多级页表架构

ver0.1 [看前序文章有惊喜,关注W\X\G=Z+H=“浩瀚架构师”,可以解锁全部文章] 前言 前文我们对SMMU的系统架构和基本功能做了简要的介绍,现在大家大致对SMMU在基于ARM体系的系统架构下的总线位置和产品形态有了基本的了解。这里我们还是简单做个前情回顾,从总线架构角度看…

【UE5 “RuntimeLoadFbx”插件】运行时加载FBX模型

前言 为了解决在Runtime时能够直接根据FBX模型路径直接加载FBX的问题&#xff0c;推荐一款名为“RuntimeLoadFBX”的插件。 用法 插件用法如下&#xff0c;只需要指定fbx的地址就可以在场景中生成Actor模型 通过指定输入参数“Cal Collision”来设置FBX模型的碰撞 还可以通过…

精品基于Python实现的微信小程序校园导航系统-微信小程序

[含文档PPT源码等] [包运行成功永久免费答疑辅导] 《django微信小程序校园导航系统》该项目采用技术Python的django框架、mysql数据库 &#xff0c;项目含有源码、文档、PPT、配套开发软件、软件安装教程、项目发布教程、核心代码介绍视频等 软件开发环境及开发工具&#xf…

Rstudio-server的安装、配置、维护

一、安装Rstudio-server (1)安装R语言&#xff1a; sudo apt install r-base # 如果没有管理员权限无法操作 # 这样装上R默认在/usr/bin/R其实基本上的流程都可以参考posit的官网&#xff08;也就是Rstudio的官网&#xff09;&#xff1a; https://posit.co/download/rstudio…

Python序列的应用(八):元组、字典

前言&#xff1a;在Python编程语言中&#xff0c;序列是一种非常重要的数据结构&#xff0c;它允许我们存储和操作有序的数据集合。在前几期的内容中&#xff0c;我们已经探讨了列表&#xff08;List&#xff09;和集合&#xff08;Set&#xff09;这两种序列的应用&#xff0c…

OpenCV 功能函数介绍

一&#xff0c; 二值化函数 功能&#xff1a; 用于对图像进行二值化处理 参数&#xff1a; cv2.threshold(输入你的图像所对应的灰度图&#xff0c; 阈值&#xff1a;是浮点还是整数取决予图像的数据类型 最大值;高于阈值的像素值&#xff0c; 阈值类型&#xff1a;cv2.THR…

【Python】使用Selenium的find_element模块获取网页上的大段文字和表格的方法(建议收藏!)

发现了一个使用Selenium的find_element模块&#xff0c;快速获取文字和表格的方法&#xff0c;很实在&#xff0c;以后爬网的时候&#xff0c;就不用beautifulSoup 和 pandas的read_html 混起来用了&#xff01; 文字部分&#xff1a;实现网络节点下&#xff0c;某个节点下的其…

【AI知识】有监督学习之回归任务(附线性回归代码及可视化)

1. 回归的基本概念 在机器学习的有监督学习中&#xff0c;回归&#xff08;Regression&#xff09;是一种常见的任务&#xff0c;它的目标是通过观察数据来建立一个模型&#xff0c;用一个或多个自变量来预测因变量的值。 回归分析通常用于&#xff1a; a.预测&#xff0c;基于…

边缘计算+人工智能:让设备更聪明的秘密

引言&#xff1a;日常生活中的“智能”设备 你是否发现&#xff0c;身边的设备正变得越来越“聪明”&#xff1f; 早上醒来时&#xff0c;智能音箱已经根据你的日程播放舒缓音乐&#xff1b;走进厨房&#xff0c;智能冰箱提醒你今天的食材库存&#xff1b;而在城市道路上&…

JVM 双亲委派模型以及垃圾回收机制

目录 1. JVM 内存区域划分 2. JVM 中类加载的过程 1) 类加载的基本流程 2) 双亲委派模型 3. JVM 中垃圾回收机制 1) 找到垃圾 a) 引用计数 b) 可达性分析 2) 释放垃圾 1. JVM 内存区域划分 一个运行起来的 Java 进程&#xff0c;其实就是一个 JVM 虚拟机。 而进程是…

ansible自动化运维(四)jinjia2模板

Jinjia2模板 前面说到playbook组成的时候&#xff0c;有介绍到template模块&#xff0c;而template模块对模板文件进行渲染时&#xff0c;使用的就是jinja2模板引擎&#xff0c;jinja2本身就是基于python的模板引擎&#xff0c;所以下面先来了解一下jinjia2模板的一些用法 基…