flink sink kafka的事务提交现象猜想

现象 

查看flink源码时 sink kafka有事务提交机制,查看源码发现是使用两阶段提交策略,而事务提交是checkpoint完成后才执行,那么如果checkpoint设置间隔时间比较长时,事务未提交之前,后端应该消费不到数据,而观察实际现象为写入kafka的消费数据可以立马消费。

测试用例

测试流程

  1. 编写任务1,设置较长的checkpoint时间,并且指定 CheckpointingMode.EXACTLY_ONCE,输出输出到kafka。
  2. 编写任务2消费任务的结果topic,打印控制台,验证结果。
  3. 根据现象查看源码,分析原因。

测试用例

测试任务1

 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);env.enableCheckpointing(1000*60l, CheckpointingMode.EXACTLY_ONCE);env.getCheckpointConfig().setCheckpointStorage("file:///flink/checkpoint");//        超时时间,checkpoint没在时间内完成则丢弃env.getCheckpointConfig().setCheckpointTimeout(50000L); //10秒env.getCheckpointConfig().setMaxConcurrentCheckpoints(2);env.getCheckpointConfig().setTolerableCheckpointFailureNumber(1);//最小间隔时间(前一次结束时间,与下一次开始时间间隔)env.getCheckpointConfig().setMinPauseBetweenCheckpoints(1000);
//        当 Flink 任务取消时,保留外部保存的 checkpoint 信息KafkaSource<String> source = KafkaSource.<String>builder().setBootstrapServers("127.0.0.1:9092").setTopics("test001").setGroupId("my-group")
//                .setStartingOffsets(OffsetsInitializer()).setStartingOffsets(OffsetsInitializer.committedOffsets()).setValueOnlyDeserializer(new SimpleStringSchema()).build();DataStreamSource<String> kafkaSource = env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source");// 从文件读取数据
//        DataStream<SensorReading> dataStream = env.addSource( new SourceTest4.MySensorSource() );DataStream<String> map = kafkaSource.map(new MapFunction<String, String>() {@Overridepublic String map(String s) throws Exception {return s;}});Properties properties = new Properties();
// 根据上面的介绍自己计算这边的超时时间,满足条件即可properties.setProperty("transaction.timeout.ms","900000");
//        properties.setProperty("bootstrap.servers", "127.0.0.1:9092");KafkaSink<String> sink = KafkaSink.<String>builder().setBootstrapServers("192.168.65.128:9092").setRecordSerializer(KafkaRecordSerializationSchema.<String>builder().setTopic("test002").setValueSerializationSchema(new SimpleStringSchema()).build()).setKafkaProducerConfig(properties).setDeliverGuarantee(DeliveryGuarantee.EXACTLY_ONCE)
//                .setDeliveryGuarantee(DeliveryGuarantee.EXACTLY_ONCE).setTransactionalIdPrefix("flink-xhaodream-").build();map.sinkTo(sink);// 打印输出env.execute();

测试任务2

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);env.enableCheckpointing(1000*150l, CheckpointingMode.EXACTLY_ONCE);env.getCheckpointConfig().setCheckpointStorage("file:///flink/checkpoint");
//        当 Flink 任务取消时,保留外部保存的 checkpoint 信息Properties properties1 = new Properties();
//        properties1.put("isolation.level","read_committed");KafkaSource<String> source = KafkaSource.<String>builder().setBootstrapServers("127.0.0.1:9092").setTopics("test002").setGroupId("my-group2").setProperties(properties1).setStartingOffsets(OffsetsInitializer.committedOffsets(OffsetResetStrategy.LATEST)).setValueOnlyDeserializer(new SimpleStringSchema()).build();DataStreamSource<String> kafkaSource = env.fromSource(source, WatermarkStrategy.noWatermarks(), "Kafka Source");kafkaSource.print(" test2接受数据");// 打印输出env.execute();

测试结果分析

测试结果:

任务1开启后,无论是否执行checkpoint,任务checkpoint都可以正常消费数据,与预期不符合。

原因排查

查看kafkaSink 的源码,找到跟与两阶段提交相关的代码,1.18源码中TwoPhaseCommittingSink有重构。kafkasink实现TwoPhaseCommittingSink接口实现,创建Commiter和Writer。

@PublicEvolving
public interface TwoPhaseCommittingSink<InputT, CommT> extends Sink<InputT> {PrecommittingSinkWriter<InputT, CommT> createWriter(Sink.InitContext var1) throws IOException;Committer<CommT> createCommitter() throws IOException;SimpleVersionedSerializer<CommT> getCommittableSerializer();@PublicEvolvingpublic interface PrecommittingSinkWriter<InputT, CommT> extends SinkWriter<InputT> {Collection<CommT> prepareCommit() throws IOException, InterruptedException;}
}--------------------------------------
public class KafkaSink<IN>implements StatefulSink<IN, KafkaWriterState>,TwoPhaseCommittingSink<IN, KafkaCommittable> {private final DeliveryGuarantee deliveryGuarantee;private final KafkaRecordSerializationSchema<IN> recordSerializer;private final Properties kafkaProducerConfig;private final String transactionalIdPrefix;KafkaSink(DeliveryGuarantee deliveryGuarantee,Properties kafkaProducerConfig,String transactionalIdPrefix,KafkaRecordSerializationSchema<IN> recordSerializer) {this.deliveryGuarantee = deliveryGuarantee;this.kafkaProducerConfig = kafkaProducerConfig;this.transactionalIdPrefix = transactionalIdPrefix;this.recordSerializer = recordSerializer;}/*** Create a {@link KafkaSinkBuilder} to construct a new {@link KafkaSink}.** @param <IN> type of incoming records* @return {@link KafkaSinkBuilder}*/public static <IN> KafkaSinkBuilder<IN> builder() {return new KafkaSinkBuilder<>();}
-- 创建Committer@Internal@Overridepublic Committer<KafkaCommittable> createCommitter() throws IOException {return new KafkaCommitter(kafkaProducerConfig);}@Internal@Overridepublic SimpleVersionedSerializer<KafkaCommittable> getCommittableSerializer() {return new KafkaCommittableSerializer();}
-- 创建writer@Internal@Overridepublic KafkaWriter<IN> createWriter(InitContext context) throws IOException {return new KafkaWriter<IN>(deliveryGuarantee,kafkaProducerConfig,transactionalIdPrefix,context,recordSerializer,context.asSerializationSchemaInitializationContext(),Collections.emptyList());}@Internal@Overridepublic KafkaWriter<IN> restoreWriter(InitContext context, Collection<KafkaWriterState> recoveredState) throws IOException {return new KafkaWriter<>(deliveryGuarantee,kafkaProducerConfig,transactionalIdPrefix,context,recordSerializer,context.asSerializationSchemaInitializationContext(),recoveredState);}@Internal@Overridepublic SimpleVersionedSerializer<KafkaWriterState> getWriterStateSerializer() {return new KafkaWriterStateSerializer();}@VisibleForTestingprotected Properties getKafkaProducerConfig() {return kafkaProducerConfig;}
}
KafkaWriter和KafkaCommitter源码,

在KafkaWriter中snapshotState方法中发现如果deliveryGuarantee == DeliveryGuarantee.EXACTLY_ONCE的开启事务的判断逻辑。

class KafkaWriter<IN>implements StatefulSink.StatefulSinkWriter<IN, KafkaWriterState>,TwoPhaseCommittingSink.PrecommittingSinkWriter<IN, KafkaCommittable> {
.... 省略代码  @Overridepublic Collection<KafkaCommittable> prepareCommit() {if (deliveryGuarantee != DeliveryGuarantee.EXACTLY_ONCE) {return Collections.emptyList();}// only return a KafkaCommittable if the current transaction has been written some dataif (currentProducer.hasRecordsInTransaction()) {final List<KafkaCommittable> committables =Collections.singletonList(KafkaCommittable.of(currentProducer, producerPool::add));LOG.debug("Committing {} committables.", committables);return committables;}// otherwise, we commit the empty transaction as is (no-op) and just recycle the producercurrentProducer.commitTransaction();producerPool.add(currentProducer);return Collections.emptyList();}@Overridepublic List<KafkaWriterState> snapshotState(long checkpointId) throws IOException {
-- 开启事务判断        
if (deliveryGuarantee == DeliveryGuarantee.EXACTLY_ONCE) {currentProducer = getTransactionalProducer(checkpointId + 1);currentProducer.beginTransaction();}return Collections.singletonList(kafkaWriterState);}
。。。。。
}

 查看 KafkaCommitter的commit()方法发现producer.commitTransaction();操作

/*** Committer implementation for {@link KafkaSink}** <p>The committer is responsible to finalize the Kafka transactions by committing them.*/
class KafkaCommitter implements Committer<KafkaCommittable>, Closeable {private static final Logger LOG = LoggerFactory.getLogger(KafkaCommitter.class);public static final String UNKNOWN_PRODUCER_ID_ERROR_MESSAGE ="because of a bug in the Kafka broker (KAFKA-9310). Please upgrade to Kafka 2.5+. If you are running with concurrent checkpoints, you also may want to try without them.\n"+ "To avoid data loss, the application will restart.";private final Properties kafkaProducerConfig;@Nullable private FlinkKafkaInternalProducer<?, ?> recoveryProducer;KafkaCommitter(Properties kafkaProducerConfig) {this.kafkaProducerConfig = kafkaProducerConfig;}@Overridepublic void commit(Collection<CommitRequest<KafkaCommittable>> requests)throws IOException, InterruptedException {for (CommitRequest<KafkaCommittable> request : requests) {final KafkaCommittable committable = request.getCommittable();final String transactionalId = committable.getTransactionalId();LOG.debug("Committing Kafka transaction {}", transactionalId);Optional<Recyclable<? extends FlinkKafkaInternalProducer<?, ?>>> recyclable =committable.getProducer();FlinkKafkaInternalProducer<?, ?> producer;try {producer =recyclable.<FlinkKafkaInternalProducer<?, ?>>map(Recyclable::getObject).orElseGet(() -> getRecoveryProducer(committable));--- 事务提交producer.commitTransaction();producer.flush();recyclable.ifPresent(Recyclable::close);} catch (RetriableException e) {LOG.warn("Encountered retriable exception while committing {}.", transactionalId, e);request.retryLater();} catch (ProducerFencedException e) {......}}}
。。。。
}
分析结果

发现除了设置checkpoint还需要kafkasink单独设置.才会实现输出端的开启事务,因此在任务1中添加设置setDeliverGuarantee(DeliveryGuarantee.EXACTLY_ONCE)

 KafkaSink<String> sink = KafkaSink.<String>builder().setBootstrapServers("192.168.65.128:9092").setRecordSerializer(KafkaRecordSerializationSchema.<String>builder().setTopic("test002").setValueSerializationSchema(new SimpleStringSchema()).build()).setKafkaProducerConfig(properties).setDeliverGuarantee(DeliveryGuarantee.EXACTLY_ONCE)
//                .setDeliveryGuarantee(DeliveryGuarantee.EXACTLY_ONCE).setTransactionalIdPrefix("flink-xhaodream-").build();

再次验证任务任务2依然可以正常消费。这是有一点头大,不明白为什么?想到既然开启事务肯定有事务的隔离级别,查询了kafka的事务隔离级别,有两种,分别是读已提交和读未提交,默认消费事务是读未提交。

​
kafka的事务隔离级别:
读已提交(Read committed):此隔离级别保证消费者只能读取已经提交的消息。这意味着事务中的消息在提交之前对消费者是不可见的。使用此隔离级别可以避免消费者读取到未提交的事务消息,确保消费者只读取到已经持久化的消息。读未提交(Read Uncommitted):此隔离级别允许消费者读取未提交的消息。这意味着事务中的消息在提交之前就对消费者可见。使用此隔离级别可以实现更低的延迟,但可能会导致消费者读取到未提交的事务消息。​

在任务2中添加isolation.level="read_committed",设定读取消费事务级别为读已提交,再次测试,发现任务1执行完checkpoint前任务2消费不到数据。而命令行可以及时消费任务1的输出topic可可以消费到数据。结果与预期相同。

 Properties properties1 = new Properties();properties1.put("isolation.level","read_committed");KafkaSource<String> source = KafkaSource.<String>builder().setBootstrapServers("127.0.0.1:9092").setTopics("test002").setGroupId("my-group2").setProperties(properties1)

注意事项

Kafka | Apache Flink

FlinkKafkaProducer 已被弃用并将在 Flink 1.15 中移除,请改用 KafkaSink

官网文档信息

Kafka | Apache Flink

Kafka Consumer 提交 Offset 的行为配置 #

Flink Kafka Consumer 允许有配置如何将 offset 提交回 Kafka broker 的行为。请注意:Flink Kafka Consumer 不依赖于提交的 offset 来实现容错保证。提交的 offset 只是一种方法,用于公开 consumer 的进度以便进行监控。

配置 offset 提交行为的方法是否相同,取决于是否为 job 启用了 checkpointing。

  • 禁用 Checkpointing: 如果禁用了 checkpointing,则 Flink Kafka Consumer 依赖于内部使用的 Kafka client 自动定期 offset 提交功能。 因此,要禁用或启用 offset 的提交,只需将 enable.auto.commit 或者 auto.commit.interval.ms 的Key 值设置为提供的 Properties 配置中的适当值。

  • 启用 Checkpointing: 如果启用了 checkpointing,那么当 checkpointing 完成时,Flink Kafka Consumer 将提交的 offset 存储在 checkpoint 状态中。 这确保 Kafka broker 中提交的 offset 与 checkpoint 状态中的 offset 一致。 用户可以通过调用 consumer 上的 setCommitOffsetsOnCheckpoints(boolean) 方法来禁用或启用 offset 的提交(默认情况下,这个值是 true )。 注意,在这个场景中,Properties 中的自动定期 offset 提交设置会被完全忽略。

kafkasink支持语义保证

kafkaSink 总共支持三种不同的语义保证(DeliveryGuarantee)。对于 DeliveryGuarantee.AT_LEAST_ONCE 和 DeliveryGuarantee.EXACTLY_ONCE,Flink checkpoint 必须启用。默认情况下 KafkaSink 使用 DeliveryGuarantee.NONE。 以下是对不同语义保证的解释:

  • DeliveryGuarantee.NONE 不提供任何保证:消息有可能会因 Kafka broker 的原因发生丢失或因 Flink 的故障发生重复。
  • DeliveryGuarantee.AT_LEAST_ONCE: sink 在 checkpoint 时会等待 Kafka 缓冲区中的数据全部被 Kafka producer 确认。消息不会因 Kafka broker 端发生的事件而丢失,但可能会在 Flink 重启时重复,因为 Flink 会重新处理旧数据。
  • DeliveryGuarantee.EXACTLY_ONCE: 该模式下,Kafka sink 会将所有数据通过在 checkpoint 时提交的事务写入。因此,如果 consumer 只读取已提交的数据(参见 Kafka consumer 配置 isolation.level),在 Flink 发生重启时不会发生数据重复。然而这会使数据在 checkpoint 完成时才会可见,因此请按需调整 checkpoint 的间隔。请确认事务 ID 的前缀(transactionIdPrefix)对不同的应用是唯一的,以保证不同作业的事务 不会互相影响!此外,强烈建议将 Kafka 的事务超时时间调整至远大于 checkpoint 最大间隔 + 最大重启时间,否则 Kafka 对未提交事务的过期处理会导致数据丢失。

推荐查看1.14版本和1.18版本结合起来看,在一些细节处理上有差异。

Kafka | Apache Flink

其他源码简介

如果查看1.18版本源码不太好理解两阶段提交,可以查看1.14.5的源码,发现FlinkKafkaProducer被标记废除请改用 KafkaSink,并将在 Flink 1.15 中移除, 在1.14.5中TwoPhaseCommitSinkFunction为抽象类,有明确定开启事务、预提交和提交的抽象方法,比较好理解。

 查看1.14.5版本的KafkaSink 的依赖,发现没有直接使用TwoPhaseCommitSinkFunction,但是查看源码可以看到使用了commiter和kafkawriter对象

public class KafkaSink<IN> implements Sink<IN, KafkaCommittable, KafkaWriterState, Void> {   public static <IN> KafkaSinkBuilder<IN> builder() {return new KafkaSinkBuilder<>();}
-- KafkaWriter 中会判断是否需要开启事务@Overridepublic SinkWriter<IN, KafkaCommittable, KafkaWriterState> createWriter(InitContext context, List<KafkaWriterState> states) throws IOException {final Supplier<MetricGroup> metricGroupSupplier =() -> context.metricGroup().addGroup("user");return new KafkaWriter<>(deliveryGuarantee,kafkaProducerConfig,transactionalIdPrefix,context,recordSerializer,new InitContextInitializationContextAdapter(context.getUserCodeClassLoader(), metricGroupSupplier),states);}-- 事务提交在kafkaCommitter@Overridepublic Optional<Committer<KafkaCommittable>> createCommitter() throws IOException {return Optional.of(new KafkaCommitter(kafkaProducerConfig));}@Overridepublic Optional<GlobalCommitter<KafkaCommittable, Void>> createGlobalCommitter()throws IOException {return Optional.empty();}...
}

KafkaWriter源码

@Overridepublic List<KafkaCommittable> prepareCommit(boolean flush) {if (deliveryGuarantee != DeliveryGuarantee.NONE || flush) {currentProducer.flush();}if (deliveryGuarantee == DeliveryGuarantee.EXACTLY_ONCE) {final List<KafkaCommittable> committables =Collections.singletonList(KafkaCommittable.of(currentProducer, producerPool::add));LOG.debug("Committing {} committables, final commit={}.", committables, flush);return committables;}return Collections.emptyList();}
-- 快照状态开启事务@Overridepublic List<KafkaWriterState> snapshotState(long checkpointId) throws IOException {if (deliveryGuarantee == DeliveryGuarantee.EXACTLY_ONCE) {currentProducer = getTransactionalProducer(checkpointId + 1);currentProducer.beginTransaction();}return ImmutableList.of(kafkaWriterState);}

1.14.5 版本TwoPhaseCommitSinkFunction是一个抽象类 在1.18 中是接口

/*** Flink Sink to produce data into a Kafka topic. By default producer will use {@link* FlinkKafkaProducer.Semantic#AT_LEAST_ONCE} semantic. Before using {@link* FlinkKafkaProducer.Semantic#EXACTLY_ONCE} please refer to Flink's Kafka connector documentation.** @deprecated Please use {@link org.apache.flink.connector.kafka.sink.KafkaSink}.*/
@Deprecated
@PublicEvolving
public class FlinkKafkaProducer<IN>extends TwoPhaseCommitSinkFunction<IN,FlinkKafkaProducer.KafkaTransactionState,FlinkKafkaProducer.KafkaTransactionContext> {。。。}
-- 1.14 版本TwoPhaseCommitSinkFunction 为抽象类@PublicEvolving
public abstract class TwoPhaseCommitSinkFunction<IN, TXN, CONTEXT> extends RichSinkFunction<IN>implements CheckpointedFunction, CheckpointListener { }-- 1.18 版本
@PublicEvolving
public interface TwoPhaseCommittingSink<InputT, CommT> extends Sink<InputT> {PrecommittingSinkWriter<InputT, CommT> createWriter(Sink.InitContext var1) throws IOException;Committer<CommT> createCommitter() throws IOException;SimpleVersionedSerializer<CommT> getCommittableSerializer();@PublicEvolvingpublic interface PrecommittingSinkWriter<InputT, CommT> extends SinkWriter<InputT> {Collection<CommT> prepareCommit() throws IOException, InterruptedException;}
}

FlinkKafkaProducer继承TwoPhaseCommitSinkFunction,会重写其中的方法,查看重写开启事务的方法
  -- FlinkKafkaProducer 中重写beginTransaction 方法@Overrideprotected FlinkKafkaProducer.KafkaTransactionState beginTransaction()throws FlinkKafkaException {switch (semantic) {case EXACTLY_ONCE:FlinkKafkaInternalProducer<byte[], byte[]> producer = createTransactionalProducer();
-- 开启kafka的procder的事务producer.beginTransaction();return new FlinkKafkaProducer.KafkaTransactionState(producer.getTransactionalId(), producer);case AT_LEAST_ONCE:case NONE:// Do not create new producer on each beginTransaction() if it is not necessaryfinal FlinkKafkaProducer.KafkaTransactionState currentTransaction =currentTransaction();if (currentTransaction != null && currentTransaction.producer != null) {return new FlinkKafkaProducer.KafkaTransactionState(currentTransaction.producer);}return new FlinkKafkaProducer.KafkaTransactionState(initNonTransactionalProducer(true));default:throw new UnsupportedOperationException("Not implemented semantic");}}

只有当FlinkKafkaProducer.Semantic 为EXACTLY_ONCE时才会开启事务,查看其构造方法

 public FlinkKafkaProducer(String topicId,SerializationSchema<IN> serializationSchema,Properties producerConfig,@Nullable FlinkKafkaPartitioner<IN> customPartitioner,FlinkKafkaProducer.Semantic semantic,int kafkaProducersPoolSize) {this(topicId,null,null,new KafkaSerializationSchemaWrapper<>(topicId, customPartitioner, false, serializationSchema),producerConfig,semantic,kafkaProducersPoolSize);}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/62732.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Y3编辑器文档4:触发器1(对话、装备、特效、行为树、排行榜、不同步问题)

文章目录 一、触发器简介1.1 触发器界面1.2 ECA语句编辑及快捷键1.3 参数设置1.4 变量设置1.5 实体触发器1.6 函数库与触发器复用 二、触发器的多层结构2.1 子触发器&#xff08;在游戏内对新的事件进行注册&#xff09;2.2 触发器变量作用域2.3 复合条件2.4 循环2.5 计时器2.6…

【开源】A065—基于SpringBoot的库存管理系统的设计与实现

&#x1f64a;作者简介&#xff1a;在校研究生&#xff0c;拥有计算机专业的研究生开发团队&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的网站项目。 代码可以查看项目链接获取⬇️&#xff0c;记得注明来意哦~&#x1f339; 赠送计算机毕业设计600个选题ex…

Ariba Procurement: Administration_Cloud Basics

# SAP Ariba Procurement: Administration_Cloud Basics 认识Ariba Cloud SAP Ariba Procurement 是一个云计算平台… The Ariba Cloud 平台需要简单理解的概念: Datacenter数据中心:SAP Ariba在世界各地有许多数据中心。这些数据中心构成了Ariba云的基本物理基础设施。 …

vulnhub靶场【shenron】--1

前言 靶机&#xff1a;shenron-1 攻击&#xff1a;kali 都采用虚拟机&#xff0c;网卡为桥接模式 主机发现 使用arp-scan -l或netdiscover -r 192.168.1.1/24扫描 信息收集 使用nmap扫描端口 网站信息探测 查看页面&#xff0c;发现是apache2的默认界面&#xff0c;查看…

等保2.0数据库测评之SQL server数据库测评

一、SQL server数据库介绍 SQL server美国Microsoft公司推出的一种关系型数据库系统。SQL Server是一个可扩展的、高性能的、为分布式客户机/服务器计算所设计的数据库管理系统。 本次安装环境为Windows10专业版操作系统&#xff0c;数据库版本为Microsoft SQL Server 2019 (…

无人机之报警器的工作原理!

一、电量监测技术 电量监测是无人机电量指示和报警功能的基础。通过实时监测无人机的电池电量&#xff0c;系统能够准确判断电池的剩余使用时间&#xff0c;并在电量不足时发出报警。电量监测技术通常包括以下几个方面&#xff1a; 电压检测&#xff1a;无人机电池内部通常配…

【pyspark学习从入门到精通23】机器学习库_6

目录 分割连续变量 标准化连续变量 分类 分割连续变量 我们经常处理高度非线性的连续特征&#xff0c;而且只用一个系数很难拟合到我们的模型中。 在这种情况下&#xff0c;可能很难只通过一个系数来解释这样一个特征与目标之间的关系。有时&#xff0c;将值划分到离散的桶中…

解密时序数据库的未来:TDengine Open Day技术沙龙精彩回顾

在数字化时代&#xff0c;开源已成为推动技术创新和知识共享的核心力量&#xff0c;尤其在数据领域&#xff0c;开源技术的涌现不仅促进了行业的快速发展&#xff0c;也让更多的开发者和技术爱好者得以参与其中。随着物联网、工业互联网等技术的广泛应用&#xff0c;时序数据库…

QT 使用共享内存 实现进程间通讯

QSharedMemory&#xff1a;如果两个进程运行在同一台机器上&#xff0c;且对性能要求非常高&#xff08;如实时数据共享、图像渲染等&#xff09;&#xff0c;建议使用共享内存。 优点&#xff1a; 高性能&#xff1a; 共享内存是进程间通信的最快方式之一&#xff0c;因为数…

OpenCV实验:图片加水印

第二篇&#xff1a;图片添加水印&#xff08;加 logo&#xff09; 1. 实验原理 水印原理&#xff1a; 图片添加水印是图像叠加的一种应用&#xff0c;分为透明水印和不透明水印。水印的实现通常依赖于像素值操作&#xff0c;将水印图片融合到目标图片中&#xff0c;常用的方法…

深入解析下oracle的number底层存储格式

oracle数据库中&#xff0c;number数据类型用来存储数值数据&#xff0c;它既可以存储负数数值&#xff0c;也可以存储正数数值。相对于其他类型数据&#xff0c;number格式的数据底层存储格式要复杂得多。今天我们就详细探究下oracle的number底层存储格式。 一、环境搭建 1.…

SparkSQL与Hive的整合

文章目录 SparkSQL与Hive的整合1.1. Spark On Hive1.1.1. Hive的准备工作1.1.2. Spark的准备工作1.1.3. Spark代码开发1.1.4. Spark On Hive案例 1.2. Hive On Spark1.3. SparkSQL命令行1.4. SparkSQL分布式查询引擎1.4.1. 开启ThriftServer服务1.4.2. beeline连接ThriftServer…

(持续更新)linux网络编程中需要注意的内核参数与网络机制

目录 零、基本说明 一、内核参数 二、相关机制 1、GRO &#xff08;1&#xff09;适用场景 &#xff08;2&#xff09;优缺点 &#xff08;3&#xff09;相关操作 2、Nagle 算法 &#xff08;1&#xff09;基本规则 &#xff08;2&#xff09;优缺点 &#xff08;3&…

DevExpress WPF中文教程:Grid - 如何移动和调整列大小?(一)

DevExpress WPF拥有120个控件和库&#xff0c;将帮助您交付满足甚至超出企业需求的高性能业务应用程序。通过DevExpress WPF能创建有着强大互动功能的XAML基础应用程序&#xff0c;这些应用程序专注于当代客户的需求和构建未来新一代支持触摸的解决方案。 无论是Office办公软件…

Matlab笔记---clear、clc、clear all应用

在MATLAB中&#xff0c;clear、clc 和 clear all 是三个常用的命令&#xff0c;它们各自有不同的作用&#xff1a; clc&#xff1a; clc 命令用于清除MATLAB命令窗口中的所有输出。它不会删除任何变量、函数或文件&#xff0c;只是清除屏幕上的显示内容&#xff0c;让你可以更…

Qt 一个简单的QChart 绘图

Qt 一个简单的QChart 绘图 先上程序运行结果图&#xff1a; “sample9_1QChart.h” 文件代码如下&#xff1a; #pragma once#include <QtWidgets/QMainWindow> #include "ui_sample9_1QChart.h"#include <QtCharts> //必须这么设置 QT_CHARTS_USE_NAME…

分布式事物XA、BASE、TCC、SAGA、AT

分布式事务——Seata 一、Seata的架构&#xff1a; 1、什么是Seata&#xff1a; 它是一款分布式事务解决方案。官网查看&#xff1a;Seata 2.执行过程 在分布式事务中&#xff0c;会有一个入口方法去调用各个微服务&#xff0c;每一个微服务都有一个分支事务&#xff0c;因…

MySQL为什么使用B+树来作索引

我来详细解释一下B树的结构和特点。 graph TDA[根节点 40|70] --> B[20|30]A --> C[50|60]A --> D[80|90]B --> E[10|15]B --> F[25|28]B --> G[35|38]C --> H[45|48]C --> I[55|58]C --> J[65|68]D --> K[75|78]D --> L[85|88]D --> M[9…

python 下载 b站视频 和音频

video_bvid&#xff1a; import os import requests import json import re from bs4 import BeautifulSoup import subprocess # from detail_video import video_bvid# video_bvid 是一个从外部得到的单个视频ID video_bvid BV1cx421Q7veclass BilibiliVideoAudio:def __in…

以太网链路详情

文章目录 1、交换机1、常见的概念1、冲突域2、广播域3、以太网卡1、以太网卡帧 4、mac地址1、mac地址表示2、mac地址分类3、mac地址转换为二进制 2、交换机的工作原理1、mac地址表2、交换机三种数据帧处理行为3、为什么会泛洪4、转发5、丢弃 3、mac表怎么获得4、同网段数据通信…