一、模型介绍
今天介绍一个唇形同步的工具-Wav2Lip;Wav2Lip是一种用于生成唇形同步(lip-sync)视频的深度学习算法,它能够根据输入的音频流自动为给定的人脸视频添加准确的口型动作。
(Paper)
Wav2Lip模型是基于生成对抗网络(GAN)构建的,它包含生成器和判别器两个主要部分。生成器负责根据输入的音频波形生成逼真的面部动画,而判别器则负责区分生成的动画与真实的面部动画 ;
其主要结构和工作原理的详细描述如下:
-
判别器(D_{SyncNet}):第一阶段是训练一个能够判别声音与嘴型是否同步的判别器。这个判别器的目标是提高对声音与嘴型同步性的判断能力。
-
生成器(编码-解码模型结构):第二阶段采用编码-解码模型结构,包括一个生成器和两个判别器。生成器尝试生成与音频同步的面部动画,而两个判别器分别负责判断生成的动画与真实动画的同步性和视觉质量。
-
主要模块:Wav2Lip模型包括三个主要模块:
- Identity Encoder(身份编码器):负责对随机参考帧进行编码,以提取身份特征。
- Speech Encoder(语音编码器):将输入语音段编码为面部动画特征。
- Face Decoder(人脸解码器):将编码后的特征进行上采样,最终生成面部动画。
二、本地部署
下面我们就在本地或者魔塔平台上部署一下这个模型,这里我选择在魔塔上部署该项目:
2.1 创建conda虚拟环境
根据github上的README,我们在硬件上需要有Nvidia的显卡,同时需要在python=3.6的环境下运行,之前博文有详细介绍如何在魔塔上安装miniconda以及创建虚拟环境,这里就不再赘述了,这里我们就创建一个名为wav2lip的虚拟环境;
2.2 安装依赖环境
git clone https://github.com/Rudrabha/Wav2Lip.gitcd Wav2Lip
注:需要注意的一点是,在安装依赖环境之前,将requirements.txt文件中的
opencv-contrib-python>=4.2.0.34改为opencv-contrib-python==4.2.0.34
# 安装依赖环境
pip install -r requirements.txt
# 下载模型权重
git clone https://www.modelscope.cn/GYMaster/Wav2lip.git
2.3 运行
python inference.py --checkpoint_path <ckpt> --face <video.mp4> --audio <an-audio-source>
其中:
--checkpoint_path 是上面下载的模型权重的路径
--face 是需要同步口型的视频文件路径
--audio 是对应的音频文件路径
需要注意一下几点:
1、音频文件的时长不应超过视频文件的时长;
2、视频文件中必须保证每一帧画面都有清晰的人脸;
2.4 Web-UI
webUI实现是基于Gradio,测试发现python3.6版本对该库的兼容性不好,所以,如果要做界面部署的话,建议在python=3.7的环境进行项目依赖库的安装,这里给出实现UI调用的脚步inference_ui.py;
# inference_ui.pyfrom os import listdir, path
import numpy as np
import scipy, cv2, os, sys, argparse, audio
import json, subprocess, random, string
from tqdm import tqdm
from glob import glob
import torch, face_detection
from models import Wav2Lip
import platform
import gradio as grparser = argparse.ArgumentParser(description='Inference code to lip-sync videos in the wild using Wav2Lip models')parser.add_argument('--checkpoint_path', type=str, help='Name of saved checkpoint to load weights from', default=None)parser.add_argument('--face', type=str, help='Filepath of video/image that contains faces to use', default=None)
parser.add_argument('--audio', type=str, help='Filepath of video/audio file to use as raw audio source', default=None)
parser.add_argument('--outfile', type=str, help='Video path to save result. See default for an e.g.', default='results/result_voice.mp4')parser.add_argument('--static', type=bool, help='If True, then use only first video frame for inference', default=False)
parser.add_argument('--fps', type=float, help='Can be specified only if input is a static image (default: 25)', default=25., required=False)parser.add_argument('--pads', nargs='+', type=int, default=[0, 10, 0, 0], help='Padding (top, bottom, left, right). Please adjust to include chin at least')parser.add_argument('--face_det_batch_size', type=int, help='Batch size for face detection', default=16)
parser.add_argument('--wav2lip_batch_size', type=int, help='Batch size for Wav2Lip model(s)', default=128)parser.add_argument('--resize_factor', default=1, type=int, help='Reduce the resolution by this factor. Sometimes, best results are obtained at 480p or 720p')parser.add_argument('--crop', nargs='+', type=int, default=[0, -1, 0, -1], help='Crop video to a smaller region (top, bottom, left, right). Applied after resize_factor and rotate arg. ' 'Useful if multiple face present. -1 implies the value will be auto-inferred based on height, width')parser.add_argument('--box', nargs='+', type=int, default=[-1, -1, -1, -1], help='Specify a constant bounding box for the face. Use only as a last resort if the face is not detected.''Also, might work only if the face is not moving around much. Syntax: (top, bottom, left, right).')parser.add_argument('--rotate', default=False, action='store_true',help='Sometimes videos taken from a phone can be flipped 90deg. If true, will flip video right by 90deg.''Use if you get a flipped result, despite feeding a normal looking video')parser.add_argument('--nosmooth', default=False, action='store_true',help='Prevent smoothing face detections over a short temporal window')args = parser.parse_args()
args.img_size = 96def get_smoothened_boxes(boxes, T):for i in range(len(boxes)):if i + T > len(boxes):window = boxes[len(boxes) - T:]else:window = boxes[i : i + T]boxes[i] = np.mean(window, axis=0)return boxesdef face_detect(images):detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, flip_input=False, device=device)batch_size = args.face_det_batch_sizewhile 1:predictions = []try:for i in tqdm(range(0, len(images), batch_size)):predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size])))except RuntimeError:if batch_size == 1: raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument')batch_size //= 2print('Recovering from OOM error; New batch size: {}'.format(batch_size))continuebreakresults = []pady1, pady2, padx1, padx2 = args.padsfor rect, image in zip(predictions, images):if rect is None:cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected.raise ValueError('Face not detected! Ensure the video contains a face in all the frames.')y1 = max(0, rect[1] - pady1)y2 = min(image.shape[0], rect[3] + pady2)x1 = max(0, rect[0] - padx1)x2 = min(image.shape[1], rect[2] + padx2)results.append([x1, y1, x2, y2])boxes = np.array(results)if not args.nosmooth: boxes = get_smoothened_boxes(boxes, T=5)results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)]del detectorreturn results def datagen(frames, mels):img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []if args.box[0] == -1:if not args.static:face_det_results = face_detect(frames) # BGR2RGB for CNN face detectionelse:face_det_results = face_detect([frames[0]])else:print('Using the specified bounding box instead of face detection...')y1, y2, x1, x2 = args.boxface_det_results = [[f[y1: y2, x1:x2], (y1, y2, x1, x2)] for f in frames]for i, m in enumerate(mels):idx = 0 if args.static else i%len(frames)frame_to_save = frames[idx].copy()face, coords = face_det_results[idx].copy()face = cv2.resize(face, (args.img_size, args.img_size))img_batch.append(face)mel_batch.append(m)frame_batch.append(frame_to_save)coords_batch.append(coords)if len(img_batch) >= args.wav2lip_batch_size:img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)img_masked = img_batch.copy()img_masked[:, args.img_size//2:] = 0img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])yield img_batch, mel_batch, frame_batch, coords_batchimg_batch, mel_batch, frame_batch, coords_batch = [], [], [], []if len(img_batch) > 0:img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)img_masked = img_batch.copy()img_masked[:, args.img_size//2:] = 0img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.mel_batch = np.reshape(mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1])yield img_batch, mel_batch, frame_batch, coords_batchmel_step_size = 16
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print('Using {} for inference.'.format(device))def _load(checkpoint_path):if device == 'cuda':checkpoint = torch.load(checkpoint_path)else:checkpoint = torch.load(checkpoint_path,map_location=lambda storage, loc: storage)return checkpointdef load_model(path):model = Wav2Lip()print("Load checkpoint from: {}".format(path))checkpoint = _load(path)s = checkpoint["state_dict"]new_s = {}for k, v in s.items():new_s[k.replace('module.', '')] = vmodel.load_state_dict(new_s)model = model.to(device)return model.eval()def main():if not os.path.isfile(args.face):raise ValueError('--face argument must be a valid path to video/image file')elif args.face.split('.')[1] in ['jpg', 'png', 'jpeg']:full_frames = [cv2.imread(args.face)]fps = args.fpselse:video_stream = cv2.VideoCapture(args.face)fps = video_stream.get(cv2.CAP_PROP_FPS)print('Reading video frames...')full_frames = []while 1:still_reading, frame = video_stream.read()if not still_reading:video_stream.release()breakif args.resize_factor > 1:frame = cv2.resize(frame, (frame.shape[1]//args.resize_factor, frame.shape[0]//args.resize_factor))if args.rotate:frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)y1, y2, x1, x2 = args.cropif x2 == -1: x2 = frame.shape[1]if y2 == -1: y2 = frame.shape[0]frame = frame[y1:y2, x1:x2]full_frames.append(frame)print ("Number of frames available for inference: "+str(len(full_frames)))if not args.audio.endswith('.wav'):print('Extracting raw audio...')command = 'ffmpeg -y -i {} -strict -2 {}'.format(args.audio, 'temp/temp.wav')subprocess.call(command, shell=True)args.audio = 'temp/temp.wav'wav = audio.load_wav(args.audio, 16000)mel = audio.melspectrogram(wav)print(mel.shape)if np.isnan(mel.reshape(-1)).sum() > 0:raise ValueError('Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again')mel_chunks = []mel_idx_multiplier = 80./fps i = 0while 1:start_idx = int(i * mel_idx_multiplier)if start_idx + mel_step_size > len(mel[0]):mel_chunks.append(mel[:, len(mel[0]) - mel_step_size:])breakmel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])i += 1print("Length of mel chunks: {}".format(len(mel_chunks)))full_frames = full_frames[:len(mel_chunks)]batch_size = args.wav2lip_batch_sizegen = datagen(full_frames.copy(), mel_chunks)for i, (img_batch, mel_batch, frames, coords) in enumerate(tqdm(gen, total=int(np.ceil(float(len(mel_chunks))/batch_size)))):if i == 0:model = load_model(args.checkpoint_path)print ("Model loaded")frame_h, frame_w = full_frames[0].shape[:-1]out = cv2.VideoWriter('temp/result.avi', cv2.VideoWriter_fourcc(*'DIVX'), fps, (frame_w, frame_h))img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(device)mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(device)with torch.no_grad():pred = model(mel_batch, img_batch)pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.for p, f, c in zip(pred, frames, coords):y1, y2, x1, x2 = cp = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))f[y1:y2, x1:x2] = pout.write(f)out.release()command = 'ffmpeg -y -i {} -i {} -strict -2 -q:v 1 {}'.format(args.audio, 'temp/result.avi', args.outfile)subprocess.call(command, shell=platform.system() != 'Windows')#========================================================================
# 假设我们有一个函数来处理视频和音频,以及选择的模型,并返回处理后的视频
# def process_video_audio(video, audio, model_name):
# args.checkpoint_path = './Wav2lip/wav2lip.pth'
# args.face = video
# args.audio = audio
# processed_video_path = './result/video.mp4'
# return processed_video_pathdef process_video_audio(video, audio, model_name):args.checkpoint_path = './Wav2lip/wav2lip.pth'args.face = videoargs.audio = audioif os.path.isfile(args.face) and args.face.split('.')[1] in ['jpg', 'png', 'jpeg']:args.static = Trueprocessed_video_path = './results/result_voice.mp4'return processed_video_path# 定义可用的模型选项
model_choices = ["Model A", "Model B", "Model C"]# 创建Gradio界面
with gr.Blocks(theme="glass") as demo:gr.Markdown("## 视频与音频处理服务")with gr.Row():video_input = gr.Video(label="上传视频文件", type="filepath")audio_input = gr.Audio(label="上传音频文件", type="filepath")model_choice = gr.Dropdown(choices=model_choices, label="选择模型", value=model_choices[0])submit_btn = gr.Button("提交")output_video = gr.Video(label="处理后的视频")# 当点击提交按钮时,调用process_video_audio函数submit_btn.click(fn=process_video_audio,inputs=[video_input, audio_input, model_choice],outputs=output_video)if __name__ == '__main__':# 启动Gradio应用demo.launch(server_name="0.0.0.0", server_port=7860)
将上述脚本放在和inference.py同一级目录,然后运行下面命令:
python inference_ui.py