助力风力发电风机设备智能化巡检,基于YOLOv3全系列【tiny/l/spp】参数模型开发构建无人机巡检场景下风机叶片缺陷问题智能化检测预警模型

在全球能源转型的大潮中,清洁环境能源的发展已成为各国关注的焦点。风力发电作为其中的佼佼者,以其可再生、无污染的特点,受到了广泛的青睐。然而,风力发电设施大多建于人迹罕至的地区,设备庞大且复杂,其维护与管理成为了一个亟待解决的问题。传统的巡检方式不仅效率低下,且存在诸多安全隐患,无法满足现代风电场管理的需求。在此背景下,无人机+AI智能化检测模型应运而生,为风力发电设施的巡检工作带来了革命性的改变。传统的风力发电设施巡检依赖于人工进行,工程人员需要定期攀爬到高大的风车塔架上,对叶片、轮轴等关键部件进行仔细检查。这种作业方式不仅耗时费力,而且受天气、地形等条件限制,往往无法按计划进行。同时,人工巡检还存在一定的安全隐患,特别是在恶劣的天气条件下,巡检人员的生命安全无法得到充分保障。此外,高昂的人工成本也是传统巡检方式的一大痛点。无人机技术的快速发展为风力发电设施的巡检提供了新的解决方案。无人机具有灵活、便捷、易操作的特点,能够轻松穿越复杂地形,到达人工难以触及的区域。通过搭载高清摄像头和传感器,无人机可以对风力发电设施进行全面、细致的巡检,收集大量的图像和数据信息。然而,单纯的无人机巡检仍存在一定的局限性。海量的图像数据需要人工进行筛选和分析,这不仅耗时耗力,而且容易遗漏关键信息。因此,引入AI智能化检测模型成为了提升巡检效率的关键。通过目标检测、图像识别等先进算法,AI模型能够对无人机采集的图像数据进行快速、准确的分析,自动识别出叶片裂纹、腐蚀、污垢等异常情况。一旦发现异常,AI模型会立即发出预警信息,并将问题位置、严重程度等信息发送到平台端,便于管理人员进行后续处理。

在实际应用中,无人机+AI智能化检测模型已经取得了显著的成效。通过定期巡航巡检,无人机能够及时发现风力发电设施中的潜在问题,避免了因设备故障导致的停电和维修成本。同时,智能化的检测模型还能够大幅提高巡检效率,降低人工成本。工程人员无需再亲自攀爬到风车塔架上进行巡检,只需在地面通过远程操作无人机即可完成相关工作。这不仅减轻了工作强度,还降低了安全风险。此外,智能化巡检还能够实现全天候作业。不受天气、地形等条件限制,无人机可以在任何时间、任何地点进行巡检工作。这大大提高了风力发电设施的可靠性和稳定性,为清洁能源的发展提供了有力保障。

本文正是基于这样的背景思考,想要尝试从实验的角度出发,开发构建无人机巡检场景下的风车叶片缺陷问题智能化检测预警模型,首先看下实例效果:

接下来看下实例数据:

本文是选择的比较经典的也是比较古老的YOLOv3来进行模型的开发,YOLOv3(You Only Look Once v3)是一种目标检测算法模型,它是YOLO系列算法的第三个版本。该算法通过将目标检测任务转化为单个神经网络的回归问题,实现了实时目标检测的能力。

YOLOv3的主要优点如下:

实时性能:YOLOv3采用了一种单阶段的检测方法,将目标检测任务转化为一个端到端的回归问题,因此具有较快的检测速度。相比于传统的两阶段方法(如Faster R-CNN),YOLOv3能够在保持较高准确率的情况下实现实时检测。

多尺度特征融合:YOLOv3引入了多尺度特征融合的机制,通过在不同层级的特征图上进行检测,能够有效地检测不同尺度的目标。这使得YOLOv3在处理尺度变化较大的场景时表现出较好的性能。

全局上下文信息:YOLOv3在网络结构中引入了全局上下文信息,通过使用较大感受野的卷积核,能够更好地理解整张图像的语义信息,提高了模型对目标的识别能力。

简洁的网络结构:YOLOv3的网络结构相对简洁,只有75个卷积层和5个池化层,使得模型较易于训练和部署,并且具有较小的模型体积。

YOLOv3也存在一些缺点:

较低的小目标检测能力:由于YOLOv3采用了较大的感受野和下采样操作,对于小目标的检测能力相对较弱。当场景中存在大量小目标时,YOLOv3可能会出现漏检或误检的情况。

较高的定位误差:由于YOLOv3将目标检测任务转化为回归问题,较粗糙的特征图和较大的感受野可能导致较高的定位误差。这意味着YOLOv3在需要较高精度的目标定位时可能会受到一定的限制。

YOLOv3是YOLO系列里程碑性质的模型,随着不断地演变和发展,目前虽然已经在性能上难以与YOLOv5之类的模型对比但是不可否认其做出的突出贡献。

我们开发构建了yolov3全系列的参数模型,包含:yolov3-tiny、yolov3和yolov3-spp,实验阶段保持完全相同的参数设置,等待训练完成我们来整体对比可视化。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能.F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。

【loss曲线】

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。

【mAP0.5】
mAP0.5(mean Average Precision at 0.5 IoU)
mAP0.5表示在IoU(交并比)阈值为0.5的情况下计算的平均精度(Average Precision,AP)。
IoU阈值决定了何时认为检测框与真实框匹配。较高的IoU阈值意味着更严格的匹配标准。
mAP0.5主要关注低阈值下的性能,即当IoU接近0.5时,模型在识别重叠框时的准确性。

【mAP0.5:0.95】
mAP0.5:0.95(mean Average Precision over IoU thresholds from 0.5 to 0.95):
mAP0.5:0.95表示在多个IoU阈值(从0.5到0.95)下计算的平均精度。
它涵盖了从低到高的IoU阈值,更全面地评估了模型在不同IoU阈值下的性能。
mAP0.5:0.95可以帮助我们了解模型在不同重叠程度下的检测能力。

从实验结果综合对比来看不难看出:tiny系列的模型效果最差,被其他系列的模型拉开了明显的差距,yolov3和yolov3-spp两款模型达到了相近的性能,且参数量相近。我们考虑最终选择使用yolov3-spp系列的模型来作为最终的推理模型。

离线推理实例如下所示:

训练可视化如下所示:

Batch实例如下:

【PR曲线】如下:

感兴趣的话也都可以自行动手尝试下!本文仅作为抛砖引玉,从实验的角度进行基础的实践开发尝试,距离真正落地应用还有很长的路要走,不过科技发展的趋势就应该是赋能作业生产,提质增效的同时降低安全隐患。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/57691.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

穷举vs暴搜vs深搜vs回溯vs剪枝 算法专题

一. 全排列 全排列 class Solution {List<List<Integer>> ret;List<Integer> path;boolean[] check;public List<List<Integer>> permute(int[] nums) {ret new ArrayList<>();//存放结果path new ArrayList<>();存放每个路径的…

【深度学习】实验 — 动手实现 GPT【三】:LLM架构、LayerNorm、GELU激活函数

【深度学习】实验 — 动手实现 GPT【三】&#xff1a;LLM架构、LayerNorm、GELU激活函数 模型定义编码一个大型语言模型&#xff08;LLM&#xff09;架构 使用层归一化对激活值进行归一化LayerNorm代码实现scale和shift 实现带有 GELU 激活的前馈网络测试 模型定义 编码一个大…

进程守护SuperVisord内部的进程定时监测并重启

一个swoole的wensocket程序运行在SuperVisord下端口9503 设置一个每分钟任务监测9503的端口链接数&#xff0c;输出链接数&#xff0c;并在链接数为0的情况下重启wensocket进程。 以下截图是宝塔面板环境下 #!/bin/bash current$(date %H.%M) ws9503_procnumnetstat -nat | gre…

ChatGPT搜索引擎推出Chrome插件

此扩展程序将使 ChatGPT 成为 Chrome 中的默认搜索引擎。点击安装chrome扩展插件。 将 ChatGPT 设置为默认搜索引擎后&#xff0c;您可以直接通过浏览器 URL 栏进行搜索。 ChatGPT 现在可以比以前更好地搜索网络。您可以快速、及时地获得答案&#xff0c;并附上相关网络资源的…

常见生成式模型汇总

生成式模型是一类通过学习数据的分布来生成新的、与原始数据类似样本的模型。以下是一些常见的生成式模型及其应用场景&#xff1a; 1. 生成对抗网络 (GANs) 生成对抗网络&#xff08;Generative Adversarial Networks&#xff09;是一种由生成器和判别器组成的模型&#xff…

深度学习每周学习总结J4(ResDenseNet 算法探索实践 - 鸟类识别)

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 目录 一&#xff1a;回顾与总结&#xff1a; 三种神经网络模型对比研究及尝试构成新的网络结构模型卷积计算过程ResNet-50 模型1. 关于残差…

IntelliJ IDEA使用技巧与插件推荐

IntelliJ IDEA是一款功能强大的集成开发环境&#xff08;IDE&#xff09;&#xff0c;它提供了丰富的功能和工具&#xff0c;帮助开发者提高编码效率。本文将介绍一些IntelliJ IDEA的使用技巧以及实用的插件推荐。 一、IntelliJ IDEA使用技巧 快捷键操作 IntelliJ IDEA支持大量…

systemctl restart NetworkManager 重启后,文件/etc/resolv.conf修改失败

如果你在重启 NetworkManager 之后发现无法修改 /etc/resolv.conf 文件,这是因为 NetworkManager 会自动管理这个文件 为了解决这个问题,你可以采取以下两种方法之一: 方法一:禁用 NetworkManager 服务 使用以下命令停止 NetworkManager 服务:sudo systemctl stop Netwo…

【天线&空中农业】作物病害检测系统源码&数据集全套:改进yolo11-EfficientFormerV2

改进yolo11-attention等200全套创新点大全&#xff1a;作物病害检测系统源码&#xff06;数据集全套 1.图片效果展示 项目来源 人工智能促进会 2024.11.01 注意&#xff1a;由于项目一直在更新迭代&#xff0c;上面“1.图片效果展示”和“2.视频效果展示”展示的系统图片或者…

Linux版更新流程

一.下载更新包 下载地址&#xff1a;https://www.nvisual.com/%e4%b8%8b%e8%bd%bd/ 二.更新包组成 更新包由三部分组成&#xff1a; 前端更新包&#xff1a;压缩的ZIP文件&#xff0c;例如&#xff1a;dist-2.2.26-20231227.zip (2.2.26是版本号 20231227是发布日期)后端更…

c++仿函数--通俗易懂

1.仿函数是什么 仿函数也叫函数对象&#xff0c;是一种可以像函数一样被调用的对象。从编程实现的角度看&#xff0c;它是一个类&#xff0c;不过这个类重载了函数调用运算符() class Add { public:int operator()(int a, int b) {return a b;} }; 注意&#xff1a;使用的时…

《中安证件阅读机:边检执法办案的得力助手》

在边检执法办案的过程中&#xff0c;高效、准确地识别和查验各类证件至关重要。而中安证件阅读机的出现&#xff0c;为边检工作带来了极大的便利&#xff0c;成为了边检执法人员的得力助手。 一、中安证件阅读机的强大功能 中安证件阅读机具备先进的技术和丰富的功能。它能够快…

计算机网络:网络层 —— IP数据报的发送和转发过程

文章目录 IP数据报的发送和转发过程主机发送IP数据报路由器转发IP数据报示例 IP数据报的发送和转发过程 IP 数据报的发送和转发过程包含以下两个过程&#xff1a; 主机发送IP数据报路由器转发IP数据报 直接交付&#xff1a;源主机与目的主机在同一网络中间接交付&#xff1a;…

104. UE5 GAS RPG 实现技能火焰爆炸

这一篇文章我们再实现一个技能火焰爆炸&#xff0c;由于我们之前已经实现了三个玩家技能&#xff0c;这一个技能有一些总结的味道&#xff0c;对于创建技能相同的部分&#xff0c;长话短说&#xff0c;我们过一遍。 准备工作 我们需要一个技能类&#xff0c;继承于伤害技能基…

C#制作学生管理系统

定义学生类 定义一个简单的类来表示学生&#xff0c;包括学号、姓名、性别、年龄、电话、地址。再给其添加一个方法利于后续添加方法查看学生信息。 //定义学生类 public class student {public int ID { get; set; }//开放读写权限public string Name { get; set; }public i…

【C语言】动态内存开辟

写在前面 C语言中有不少开辟空间的办法&#xff0c;但是在堆上开辟的方法也就只有动态内存开辟&#xff0c;其访问特性与数组相似&#xff0c;但最大区别是数组是开辟在栈上&#xff0c;而动态内存开辟是开辟在堆上的。这篇笔记就让不才娓娓道来。 PS:本篇没有目录实在抱歉CSD…

Excel:vba实现插入图片

实现的效果&#xff1a; 实现的代码&#xff1a; Sub InsertImageNamesAndPictures()Dim PicPath As StringDim PicName As StringDim PicFullPath As StringDim RowNum As IntegerDim Pic As ObjectDim Name As String 防止表格里面有脏数据Cells.Clear 遍历工作表中的每个图…

6.FreeRTOS之任务通知

什么是任务通知&#xff1f; FreeRTOS 从版本 V8.2.0 开始提供任务通知这个功能&#xff0c;每个任务都有一个 32 位的通知值。按照 FreeRTOS 官方的说法&#xff0c;使用消息通知比通过二进制信号量方式解除阻塞任务快 45% &#xff0c; 并且更加 省内存&#xff08;无需创…

前端之html(一)

HTML定义: HTML 超文本标记语言 (1)骨架: HTML:整个网页 head:网页头部 boby:网页主体 title:网页标题 (2)标签关系: 1.嵌套 2.并列 (3)注释 语法:<!-- ... --> 基础: (4) 标签:双标签:<> ... </> 单标签:<> <br> …