【深度学习】实验 — 动手实现 GPT【三】:LLM架构、LayerNorm、GELU激活函数

【深度学习】实验 — 动手实现 GPT【三】:LLM架构、LayerNorm、GELU激活函数

  • 模型定义
    • 编码一个大型语言模型(LLM)架构
  • 使用层归一化对激活值进行归一化
    • LayerNorm代码实现
    • scale和shift
  • 实现带有 GELU 激活的前馈网络
    • 测试

模型定义

编码一个大型语言模型(LLM)架构

  • 像 GPT 和 Llama 这样的模型是基于原始 Transformer 架构的解码器部分,按顺序生成词。
  • 因此,这些 LLM 通常被称为“类似解码器”的 LLM。
  • 与传统的深度学习模型相比,LLM 更大,主要原因在于其庞大的参数数量,而非代码量。
  • 我们会看到,在 LLM 架构中许多元素是重复的。

请添加图片描述

  • 我们考虑的嵌入和模型大小类似于小型 GPT-2 模型。

  • 我们将具体实现最小的 GPT-2 模型(1.24 亿参数)的架构,参考 Radford 等人发表的 Language Models are Unsupervised Multitask Learners(注意,最初报告中列出该模型参数量为 1.17 亿,但模型权重库后来更正为 1.24 亿)。

  • 后续部分将展示如何将预训练权重加载到我们的实现中,以支持 3.45 亿、7.62 亿和 15.42 亿参数的模型大小。

  • 1.24亿参数GPT-2型号的配置细节包括:

GPT_CONFIG_124M = {"vocab_size": 50257,    # Vocabulary size"context_length": 1024, # Context length"emb_dim": 768,         # Embedding dimension"n_heads": 12,          # Number of attention heads"n_layers": 12,         # Number of layers"drop_rate": 0.1,       # Dropout rate"qkv_bias": False       # Query-Key-Value bias
}
  • 我们使用简短的变量名,以避免代码中出现过长的行。
  • "vocab_size" 表示词汇表大小为 50,257,由 BPE 分词器支持。
  • "context_length" 表示模型的最大输入词元数量,由位置嵌入实现。
  • "emb_dim" 是输入词元的嵌入维度,将每个输入词元转换为 768 维向量。
  • "n_heads" 是多头注意力机制中的注意力头数。
  • "n_layers" 是模型中的 Transformer 块数量。
  • "drop_rate" 是 dropout 机制的强度,在第 3 章中讨论过;0.1 表示在训练过程中丢弃 10% 的隐藏单元,以减轻过拟合。
  • "qkv_bias" 决定多头注意力机制中的 Linear 层在计算查询(Q)、键(K)和值(V)张量时是否包含偏置向量;我们将禁用此选项,这是现代 LLM 的标准做法。

使用层归一化对激活值进行归一化

  • 层归一化(LayerNorm),也称为层归一化,Ba 等人,2016 提出,旨在将神经网络层的激活值中心化为 0 均值,并将其方差归一化为 1。
  • 这有助于稳定训练过程,并加快有效权重的收敛速度。
  • 层归一化在 Transformer 块内的多头注意力模块之前和之后应用,稍后我们会实现;此外,它也应用在最终输出层之前。
    请添加图片描述
  • 让我们通过一个简单的神经网络层传递一个小的输入样本,来看看层归一化的工作原理:
# create 2 training examples with 5 dimensions (features) each
batch_example = torch.randn(2, 5)layer = nn.Sequential(nn.Linear(5, 6), nn.ReLU())
out = layer(batch_example)
print(out)

输出

tensor([[0.0000, 0.0000, 0.1504, 0.2049, 0.0694, 0.0000],[0.0000, 0.0000, 0.1146, 0.3098, 0.0939, 0.5742]],grad_fn=<ReluBackward0>)
  • 让我们计算上面2个输入中每一个的均值和方差:
mean = out.mean(dim=-1, keepdim=True)
var = out.var(dim=-1, keepdim=True)print("Mean:\n", mean)
print("Variance:\n", var)
Mean:tensor([[0.3448],[0.2182]], grad_fn=<MeanBackward1>)
Variance:tensor([[0.0791],[0.2072]], grad_fn=<VarBackward0>)
  • 归一化独立应用于每个输入(行);使用 dim=-1 会在最后一个维度(此处为特征维度)上执行计算,而不是在行维度上执行。

请添加图片描述

  • 减去均值并除以方差(标准差)的平方根,使输入在列(特征)维度上具有 0 的均值和 1 的方差:
out_norm = (out - mean) / torch.sqrt(var)
print("Normalized layer outputs:\n", out_norm)mean = out_norm.mean(dim=-1, keepdim=True)
var = out_norm.var(dim=-1, keepdim=True)
print("Mean:\n", mean)
print("Variance:\n", var)

输出

Normalized layer outputs:tensor([[ 1.9920, -0.1307, -0.3069, -0.7573, -0.2769, -0.5201],[-0.4793, -0.4793, -0.4793, -0.1003,  2.0176, -0.4793]],grad_fn=<DivBackward0>)
Mean:tensor([[-9.9341e-09],[ 4.5945e-08]], grad_fn=<MeanBackward1>)
Variance:tensor([[1.0000],[1.0000]], grad_fn=<VarBackward0>)
  • 每个输入都以 0 为中心,方差为 1;为了提高可读性,我们可以禁用 PyTorch 的科学计数法:
torch.set_printoptions(sci_mode=False)
print("Mean:\n", mean)
print("Variance:\n", var)

输出

Mean:tensor([[    -0.0000],[     0.0000]], grad_fn=<MeanBackward1>)
Variance:tensor([[1.0000],[1.0000]], grad_fn=<VarBackward0>)
  • 上面我们对每个输入的特征进行了归一化。
  • 现在,基于相同的思想,我们可以实现一个 LayerNorm 类:

LayerNorm代码实现

class LayerNorm(nn.Module):def __init__(self, emb_dim):super().__init__()self.eps = 1e-5self.scale = nn.Parameter(torch.ones(emb_dim))self.shift = nn.Parameter(torch.zeros(emb_dim))def forward(self, x):"""args:x: torch.TensorThe input tensorreturns:norm_x: torch.TensorThe normalized tensorStep:1. Compute the mean and variance separately2. Normalize the tensor3. Scale and shift the tensor4. Return the normalized tensor"""# complete this section (3/10)# 1. 计算每个特征的均值和方差mean = x.mean(dim=-1,keepdim=True)variance = x.var(dim=-1,keepdim=True,unbiased=False)# 2. 对张量进行归一化处理x_normalized = (x - mean) / torch.sqrt(variance + self.eps)# 3. 缩放并平移张量norm_x = self.scale * x_normalized + self.shift# 4. 返回归一化后的张量return norm_x

scale和shift

  • 注意,除了通过减去均值并除以方差来执行归一化外,我们还添加了两个可训练的参数:scaleshift
  • 初始的 scale(乘以 1)和 shift(加 0)值不会产生任何效果;但是,scaleshift 是可训练的参数,LLM 会在训练期间自动调整它们,以提高模型在训练任务中的表现。
  • 这使得模型可以学习适合其处理数据的适当缩放和偏移。
  • 另外,在计算方差的平方根之前我们添加了一个较小的值(eps),以避免方差为 0 时的除零错误。

有偏方差

  • 在上述方差计算中,设置 unbiased=False 意味着使用公式 ∑ i ( x i − x ˉ ) 2 n \cfrac{\sum_i (x_i - \bar{x})^2}{n} ni(xixˉ)2 计算方差,其中 n 为样本大小(在这里为特征或列数);此公式不包含贝塞尔校正(其分母为 n-1),因此提供了方差的有偏估计。

  • 对于嵌入维度 n 很大的 LLM,使用 n 和 n-1 之间的差异可以忽略不计。

  • 然而,GPT-2 的归一化层是在有偏方差下训练的,因此为了与我们将在后续章节加载的预训练权重兼容,我们也采用了这种设置。

  • 现在让我们实际尝试 LayerNorm

ln = LayerNorm(emb_dim=5)
out_ln = ln(batch_example)
mean = out_ln.mean(dim=-1, keepdim=True)
var = out_ln.var(dim=-1, unbiased=False, keepdim=True)print("Mean:\n", mean)
print("Variance:\n", var)

输出

Mean:tensor([[    -0.0000],[    -0.0000]], grad_fn=<MeanBackward1>)
Variance:tensor([[0.9999],[1.0000]], grad_fn=<VarBackward0>)

实现带有 GELU 激活的前馈网络

  • GELU(Hendrycks 和 Gimpel, 2016)可以通过多种方式实现;其精确版本定义为 GELU ( x ) = x ⋅ Φ ( x ) \text{GELU}(x) = x \cdot \Phi(x) GELU(x)=xΦ(x),其中 Φ ( x ) \Phi(x) Φ(x) 是标准高斯分布的累积分布函数。
  • 实际中,通常使用计算成本较低的近似实现: GELU ( x ) ≈ 0.5 ⋅ x ⋅ ( 1 + tanh ⁡ [ 2 π ⋅ ( x + 0.044715 ⋅ x 3 ) ] ) \text{GELU}(x) \approx 0.5 \cdot x \cdot \left(1 + \tanh\left[\sqrt{\frac{2}{\pi}} \cdot \left(x + 0.044715 \cdot x^3\right)\right]\right) GELU(x)0.5x(1+tanh[π2 (x+0.044715x3)])(原始的 GPT-2 模型也是在这种近似下训练的)。
class GELU(nn.Module):def __init__(self):super().__init__()def forward(self, x):"""args:x: torch.TensorThe input tensorreturns:torch.TensorThe output tensor"""# Complete this section (4/10)# Approximate GELU using the tanh-based formulareturn 0.5 * x * (1 + torch.tanh((torch.sqrt(torch.tensor(2 / 3.1415)) * (x + 0.044715 * torch.pow(x, 3)))))
import matplotlib.pyplot as pltgelu, relu = GELU(), nn.ReLU()# Some sample data
x = torch.linspace(-3, 3, 100)
y_gelu, y_relu = gelu(x), relu(x)plt.figure(figsize=(8, 3))
for i, (y, label) in enumerate(zip([y_gelu, y_relu], ["GELU", "ReLU"]), 1):plt.subplot(1, 2, i)plt.plot(x, y)plt.title(f"{label} activation function")plt.xlabel("x")plt.ylabel(f"{label}(x)")plt.grid(True)plt.tight_layout()
plt.show()

输出请添加图片描述

  • 接下来,让我们实现一个小型神经网络模块 FeedForward,稍后将在 LLM 的 Transformer 块中使用:
class FeedForward(nn.Module):def __init__(self, cfg):super().__init__()"""implement self.layers as a Sequential model with:1. Linear layer with input dimension cfg["emb_dim"] and output dimension 4*cfg["emb_dim"]2. GELU activation function3. Linear layer with input dimension 4*cfg["emb_dim"] and output dimension cfg["emb_dim"]"""# complete this section (5/10)self.layers = nn.Sequential(nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),  # 1. 线性层,输入维度 cfg["emb_dim"],输出 4*cfg["emb_dim"]GELU(),                                          # 2. 使用 GELU 激活函数nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"])    # 3. 线性层,输入维度 4*cfg["emb_dim"],输出 cfg["emb_dim"])def forward(self, x):return self.layers(x)
print(GPT_CONFIG_124M["emb_dim"])

输出

768

请添加图片描述

测试

ffn = FeedForward(GPT_CONFIG_124M)# input shape: [batch_size, num_token, emb_size]
x = torch.rand(2, 3, 768)
out = ffn(x)
print(out.shape)

输出

torch.Size([2, 3, 768])

请添加图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/57689.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

进程守护SuperVisord内部的进程定时监测并重启

一个swoole的wensocket程序运行在SuperVisord下端口9503 设置一个每分钟任务监测9503的端口链接数&#xff0c;输出链接数&#xff0c;并在链接数为0的情况下重启wensocket进程。 以下截图是宝塔面板环境下 #!/bin/bash current$(date %H.%M) ws9503_procnumnetstat -nat | gre…

深度学习每周学习总结J4(ResDenseNet 算法探索实践 - 鸟类识别)

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 目录 一&#xff1a;回顾与总结&#xff1a; 三种神经网络模型对比研究及尝试构成新的网络结构模型卷积计算过程ResNet-50 模型1. 关于残差…

【天线&空中农业】作物病害检测系统源码&数据集全套:改进yolo11-EfficientFormerV2

改进yolo11-attention等200全套创新点大全&#xff1a;作物病害检测系统源码&#xff06;数据集全套 1.图片效果展示 项目来源 人工智能促进会 2024.11.01 注意&#xff1a;由于项目一直在更新迭代&#xff0c;上面“1.图片效果展示”和“2.视频效果展示”展示的系统图片或者…

Linux版更新流程

一.下载更新包 下载地址&#xff1a;https://www.nvisual.com/%e4%b8%8b%e8%bd%bd/ 二.更新包组成 更新包由三部分组成&#xff1a; 前端更新包&#xff1a;压缩的ZIP文件&#xff0c;例如&#xff1a;dist-2.2.26-20231227.zip (2.2.26是版本号 20231227是发布日期)后端更…

c++仿函数--通俗易懂

1.仿函数是什么 仿函数也叫函数对象&#xff0c;是一种可以像函数一样被调用的对象。从编程实现的角度看&#xff0c;它是一个类&#xff0c;不过这个类重载了函数调用运算符() class Add { public:int operator()(int a, int b) {return a b;} }; 注意&#xff1a;使用的时…

《中安证件阅读机:边检执法办案的得力助手》

在边检执法办案的过程中&#xff0c;高效、准确地识别和查验各类证件至关重要。而中安证件阅读机的出现&#xff0c;为边检工作带来了极大的便利&#xff0c;成为了边检执法人员的得力助手。 一、中安证件阅读机的强大功能 中安证件阅读机具备先进的技术和丰富的功能。它能够快…

计算机网络:网络层 —— IP数据报的发送和转发过程

文章目录 IP数据报的发送和转发过程主机发送IP数据报路由器转发IP数据报示例 IP数据报的发送和转发过程 IP 数据报的发送和转发过程包含以下两个过程&#xff1a; 主机发送IP数据报路由器转发IP数据报 直接交付&#xff1a;源主机与目的主机在同一网络中间接交付&#xff1a;…

104. UE5 GAS RPG 实现技能火焰爆炸

这一篇文章我们再实现一个技能火焰爆炸&#xff0c;由于我们之前已经实现了三个玩家技能&#xff0c;这一个技能有一些总结的味道&#xff0c;对于创建技能相同的部分&#xff0c;长话短说&#xff0c;我们过一遍。 准备工作 我们需要一个技能类&#xff0c;继承于伤害技能基…

【C语言】动态内存开辟

写在前面 C语言中有不少开辟空间的办法&#xff0c;但是在堆上开辟的方法也就只有动态内存开辟&#xff0c;其访问特性与数组相似&#xff0c;但最大区别是数组是开辟在栈上&#xff0c;而动态内存开辟是开辟在堆上的。这篇笔记就让不才娓娓道来。 PS:本篇没有目录实在抱歉CSD…

Excel:vba实现插入图片

实现的效果&#xff1a; 实现的代码&#xff1a; Sub InsertImageNamesAndPictures()Dim PicPath As StringDim PicName As StringDim PicFullPath As StringDim RowNum As IntegerDim Pic As ObjectDim Name As String 防止表格里面有脏数据Cells.Clear 遍历工作表中的每个图…

6.FreeRTOS之任务通知

什么是任务通知&#xff1f; FreeRTOS 从版本 V8.2.0 开始提供任务通知这个功能&#xff0c;每个任务都有一个 32 位的通知值。按照 FreeRTOS 官方的说法&#xff0c;使用消息通知比通过二进制信号量方式解除阻塞任务快 45% &#xff0c; 并且更加 省内存&#xff08;无需创…

前端之html(一)

HTML定义: HTML 超文本标记语言 (1)骨架: HTML:整个网页 head:网页头部 boby:网页主体 title:网页标题 (2)标签关系: 1.嵌套 2.并列 (3)注释 语法:<!-- ... --> 基础: (4) 标签:双标签:<> ... </> 单标签:<> <br> …

书生第四期实训营基础岛——L1G3000浦语提示词工程实践

基础任务 任务要求 背景问题&#xff1a;近期相关研究指出&#xff0c;在处理特定文本分析任务时&#xff0c;语言模型的表现有时会遇到挑战&#xff0c;例如在分析单词内部的具体字母数量时可能会出现错误。任务要求&#xff1a;利用对提示词的精确设计&#xff0c;引导语言…

Android启动流程_SystemServer阶段

前言 上一篇文档我们描述了在 Android 启动流程中 Zygote 部分的内容&#xff0c;从 Zygote 的配置、启动、初始化等内容展开&#xff0c;描述了 Zygote 在 Android 启动中的功能逻辑。本篇文档将会继续 Android 启动流程的描述&#xff0c;从 SystemServer 进程的内容展开&am…

Flutter CustomScrollView 效果-顶栏透明与标签栏吸顶

CustomScrollView 效果 1. 关键组件 CustomScrollView, SliverOverlapAbsorber, SliverPersistentHeader 2. 关键内容 TLDR SliverOverlapAbsorber 包住 pinned为 true 的组件 可以被CustomScrollView 忽略高度。 以下的全部内容的都为了阐述上面这句话。初阶 Flutter 开发知…

Litctf-web

Litctf-web exx xxe&#xff0c; <?xml version"1.0" encoding"utf-8"?> <!DOCTYPE xxe [<!ELEMENT name ANY ><!ENTITY xxe SYSTEM "file:///flag" >]><user><username>&xxe;</username> …

线程模型介绍

线程模型的介绍 线程有三种模型&#xff1a;N:1用户线程模型&#xff0c;1:1核心线程模式&#xff0c;N:M混合线程模型 POSIX: Portable Operating System Interface(可移值操作系统接口) N&#xff1a;1用户线程模型 线程的实现建立在进程控制的机制之上&#xff0c;有用户…

2024 Rust现代实用教程:1.3获取rust的库国内源以及windows下的操作

文章目录 一、使用Cargo第三方库1.直接修改Cargo.toml2.使用cargo-edit插件3.设置国内源4.与windows下面的rust不同点 参考 一、使用Cargo第三方库 1.直接修改Cargo.toml rust语言的库&#xff1a;crate 黏贴至Cargo.toml 保存完毕之后&#xff0c;自动下载依赖 拷贝crat…

ML 系列:第 18 部 - 高级概率论:条件概率、随机变量和概率分布

文章目录 一、说明二、关于条件概率2.1 为什么我们说条件概率&#xff1f;2.2 为什么条件概率在统计学中很重要 三、 随机变量的定义3.1 定义3.2 条件概率中的随机变量 四、概率分布的定义五、结论 一、说明 条件概率是极其重要的概率概念&#xff0c;它是因果关系的数学表述&…