How do I format markdown chatgpt response in tkinter frame python?

题意:怎样在Tkinter框架中使用Python来格式化Markdown格式的ChatGPT响应?

问题背景:

Chatgpt sometimes responds in markdown language. Sometimes the respond contains ** ** which means the text in between should be bold and ### text ### which means that text is a heading. I want to format this correctly and display it properly in tkinter. If it's bold or a heading, it should be formatted to bold or to a heading in tkintter. How to do this?

ChatGPT有时会以Markdown语言回应。有时回应中包含** **,这表示中间的文本应该是粗体的;而### text ###则表示该文本是一个标题。我想在Tkinter中正确地格式化并显示这些文本。如果它是粗体或标题,则应该在Tkinter中以粗体或标题的形式显示。如何做到这一点?

My code:

import tkinter as tk
from tkinter import ttk
from datetime import datetime
import openai
import json
import requestshistory = []
# Create a function to use ChatGPT 3.5 turbo to answer a question based on the prompt
def get_answer_from_chatgpt(prompt, historyxx):global historyopenai.api_key = "xxxxxxx"append_to_chat_log(message="\n\n\n")append_to_chat_log("Chatgpt")print("Trying")messages = [{"role": "user", "content": prompt}]try:stream = openai.chat.completions.create(model="gpt-3.5-turbo",messages=messages,stream=True,)for chunk in stream:chunk = chunk.choices[0].delta.contentchunk = str(chunk)if chunk != "None":append_to_chat_log(message=chunk)append_to_chat_log(message="\n\n\n")print("Streaming complete")except Exception as e:print(e)return "Sorry, an error occurred while processing your request."# Create a function to use OpenAI to answer a question based on the search resultsdef append_to_chat_log(sender=None, message=None):chat_log.config(state="normal")if sender:chat_log.insert("end", f"{sender}:\n", "sender")if message:chat_log.insert("end", message)chat_log.config(state="disabled")chat_log.see("end")chat_log.update()def send_message(event=None):global historymessage = message_entry.get(1.0, "end-1c") message = message.strip()message_entry.delete(1.0, tk.END)message_entry.update()if not message:pass else:append_to_chat_log("User", message)history.append(("user", message))if len(history) >4:history = history[-4:]print(message)response = get_answer_from_chatgpt(message, history)history.append(("assistant", response))root = tk.Tk()root.title("Chat")# Maximize the window
root.attributes('-zoomed', True)chat_frame = tk.Frame(root)
chat_frame.pack(expand=True, fill=tk.BOTH)chat_log = tk.Text(chat_frame, state='disabled', wrap='word', width=70, height=30, font=('Arial', 12), highlightthickness=0, borderwidth=0)
chat_log.pack(side=tk.LEFT, padx=(500,0), pady=10)message_entry = tk.Text(root, padx=17, insertbackground='white', width=70, height=1, spacing1=20, spacing3=20, font=('Open Sans', 14))
message_entry.pack(side=tk.LEFT, padx=(500, 0), pady=(0, 70))  # Adjust pady to move it slightly above the bottom
message_entry.mark_set("insert", "%d.%d" % (0,0))
message_entry.bind("<Return>", send_message)root.mainloop()

问题解决:

I solved my own question        我解决了我自己提出的问题

import tkinter as tk
from datetime import datetime
import openaihistory = []# Create a function to use ChatGPT 3.5 turbo to answer a question based on the prompt
def get_answer_from_chatgpt(prompt, historyxx):global historyopenai.api_key = "xxxx"append_to_chat_log(message="\n\n\n")append_to_chat_log("Chatgpt")print("Trying")messages = [{"role": "user", "content": prompt}]try:stream = openai.chat.completions.create(model="gpt-3.5-turbo",messages=messages,stream=True,)buffer = ""heading =  ""bold = Falsewhile True:chunk = next(stream)chunk = chunk.choices[0].delta.contentchunk = str(chunk)if chunk != "None":buffer += chunkif "**" in buffer:while "**" in buffer:pre, _, post = buffer.partition("**")append_to_chat_log(message=pre, bold=bold)bold = not boldbuffer = postif "###" in buffer:while "###" in buffer:pre, _, post = buffer.partition("###")append_to_chat_log(message=pre, bold=heading)heading = not headingbuffer = postelse:append_to_chat_log(message=buffer, bold=bold)buffer = ""append_to_chat_log(message="\n\n\n")print("Streaming complete")except Exception as e:print(e)return "Sorry, an error occurred while processing your request."def append_to_chat_log(sender=None, message=None, bold=False, heading=False):chat_log.config(state="normal")if sender:chat_log.insert("end", f"{sender}:\n", "sender")if message:if bold:chat_log.insert("end", message, "bold")if heading:chat_log.insert("end", message, "heading")else:chat_log.insert("end", message)chat_log.config(state="disabled")chat_log.see("end")chat_log.update()def send_message(event=None):global historymessage = message_entry.get(1.0, "end-1c")message = message.strip()message_entry.delete(1.0, tk.END)message_entry.update()if not message:pass else:append_to_chat_log("User", message)history.append(("user", message))if len(history) > 4:history = history[-4:]print(message)response = get_answer_from_chatgpt(message, history)history.append(("assistant", response))root = tk.Tk()
root.title("Chat")# Maximize the window
root.attributes('-zoomed', True)chat_frame = tk.Frame(root)
chat_frame.pack(expand=True, fill=tk.BOTH)chat_log = tk.Text(chat_frame, state='disabled', wrap='word', width=70, height=30, font=('Arial', 12), highlightthickness=0, borderwidth=0)
chat_log.tag_configure("sender", font=('Arial', 12, 'bold'))
chat_log.tag_configure("bold", font=('Arial', 12, 'bold'))
chat_log.tag_configure("heading", font=('Arial', 16, 'bold'))
chat_log.pack(side=tk.LEFT, padx=(500,0), pady=10)message_entry = tk.Text(root, padx=17, insertbackground='white', width=70, height=1, spacing1=20, spacing3=20, font=('Open Sans', 14))
message_entry.pack(side=tk.LEFT, padx=(500, 0), pady=(0, 70))  # Adjust pady to move it slightly above the bottom
message_entry.mark_set("insert", "%d.%d" % (0,0))
message_entry.bind("<Return>", send_message)root.mainloop()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/42914.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python数据分析-天气类型预测分析

一、研究背景 近年来&#xff0c;随着全球气候变化的加剧&#xff0c;天气预报和气象预测变得越来越重要。准确的天气预测不仅能够帮助人们做好日常生活的安排&#xff0c;还能在农业生产、防灾减灾等方面起到关键作用。随着大数据技术和机器学习算法的快速发展&#xff0c;利…

科普文:深入理解负载均衡(四层负载均衡、七层负载均衡)

概叙 网络模型&#xff1a;OSI七层模型、TCP/IP四层模型、现实的五层模型 应用层&#xff1a;对软件提供接口以使程序能使用网络服务&#xff0c;如事务处理程序、文件传送协议和网络管理等。&#xff08;HTTP、Telnet、FTP、SMTP&#xff09; 表示层&#xff1a;程序和网络之…

基于vue的地图特效(飞线和标注)

这段代码的主要功能是在页面加载完成后&#xff0c;初始化一个 echarts 地图图表&#xff0c;并配置了相关的地理数据、散点数据、线条数据以及样式效果&#xff0c;最后在指定的 div 元素中进行展示。 需要再vue中的框架实现&#xff0c;不能单独直接运行。 标注 type: effe…

Python30 使用Gensim库实现Word2Vec对文本进行处理

1.Word2Vec Word2Vec 是一种将词语表示为向量的技术&#xff0c;能够捕捉词语之间的语义关系。它由 Google 的 Tomas Mikolov 等人在 2013 年提出&#xff0c;广泛应用于自然语言处理任务中。其核心概念主要包括&#xff1a; 词嵌入&#xff08;Word Embeddings&#xff09; …

使用昇腾芯片进行多卡训推时使用hccl_tools.py为npu分配ip报错问题解决办法

目录 问题描述问题产生原因解决办法最终执行并验证参考网站命令扩展 问题描述 昇腾芯片&#xff08;910b/310p等&#xff09;进行多卡训练或者推理时需要先获取并配置每张npu的ip信息&#xff0c;因此需要执行类似下面问题&#xff1a; python mindformers/tools/hccl_tools.…

[AI 大模型] Meta LLaMA-2

文章目录 [AI 大模型] Meta LLaMA-2简介模型架构发展新技术和优势示例 [AI 大模型] Meta LLaMA-2 简介 Meta LLaMA-2 是 Meta 推出的第二代开源大型语言模型&#xff08;LLM&#xff09;&#xff0c;旨在为研究和商业应用提供强大的自然语言处理能力。 LLaMA-2 系列模型包括从…

Python29 Tensorflow的基本知识和使用

1. TensorFlow TensorFlow 是一个开源的机器学习框架&#xff0c;由 Google Brain 团队开发。它用于数据流图的计算&#xff0c;尤其擅长深度学习任务。在 TensorFlow 中&#xff0c;数据流图&#xff08;Data Flow Graph&#xff09;是其核心概念之一&#xff0c;它定义了计算…

Blackbox AI : 全新的人工智能编码助手 您的高效AI开发全能助手

&#x1f3ac; 鸽芷咕&#xff1a;个人主页 &#x1f525; 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想&#xff0c;就是为了理想的生活! 引入 提起AI 智能编码助手&#xff0c;相信到了如今大家都不陌生。其对我们开发的代码时的效率有显著的提升&#xff0c;可以说…

效果惊人!LivePortrait开源数字人技术,让静态照片生动起来

不得了了,快手已经不是众人所知的那个短视频娱乐平台了。 可灵AI视频的风口尚未过去,又推出了LivePortrait--开源的数字人项目。LivePortrait让你的照片动起来,合成逼真的动态人像视频,阿里通义EMO不再是唯一选择。 让图像动起来 LivePortrait 主要提供了对眼睛和嘴唇动作的…

Mattermost:一个强大的开源协作平台

Mattermost是一个强大的开源协作平台&#xff0c;基于云原生架构&#xff0c;为企业级用户提供安全、可扩展且自托管的消息传递解决方案。 一、平台特点 开源与定制性&#xff1a;Mattermost是一个开源项目&#xff0c;用户可以根据自身需求定制界面、添加功能或扩展其功能&am…

matlab 卷积和多项式乘法

目录 一、算法原理1、原理概述2、主要函数二、代码实现1、通过卷积计算多项式乘法2、向量卷积3、卷积的中心部分三、参考链接一、算法原理 1、原理概述 两个向量 u u u和 v v v的卷积,表示

大屏自适应容器组件 v-scale-screen

在vue中&#xff0c;v-scale-screen可用于大屏项目开发&#xff0c;实现屏幕自适应&#xff0c;可根据宽度自适应&#xff0c;高度自适应&#xff0c;和宽高等比例自适应&#xff0c;全屏自适应。 仓库地址&#xff1a;github国内地址&#xff1a;gitee 一、安装 npm instal…

React setState

老生常谈之setState 是同步的还是异步的&#xff1f; 设想setState是同步的&#xff0c;那也就是每次调用setState都要进行新旧虚拟DOM的对比&#xff0c;然后将差异化的dom更新到页面上&#xff0c;性能损耗很大 所以react把setState设置为了异步&#xff0c;当状态更新时不…

【Unity2D 2022:Audio】添加游戏音乐和音效

一、添加背景音乐 1. 创建空的游戏物体&#xff0c;名为BackgroundMusic 2. 为音频播放器添加音频源&#xff08;Audio Source&#xff09;组件 3. 将背景音乐音频赋值到AudioClip&#xff08;红色&#xff09; 4. 设置循环播放&#xff08;蓝色&#xff09; 二、添加草莓拾取…

springboot封装请求参数json的源码解析

源码位置&#xff1a; org.springframework.web.servlet.mvc.method.annotation.AbstractMessageConverterMethodArgumentResolver#readWithMessageConverters(org.springframework.http.HttpInputMessage, org.springframework.core.MethodParameter, java.lang.reflect.Type…

解答 | http和https的区别,谁更好用

TTP&#xff08;超文本传输协议&#xff09;和HTTPS&#xff08;安全超文本传输协议&#xff09;的主要区别在于安全性和数据传输的方式。 一、区别 1、协议安全性&#xff1a; HTTP&#xff1a;使用明文形式传输数据&#xff0c;不提供数据加密功能&#xff0c;数据在传输过…

coze搭建工作流和Agent

coze搭建工作流和Agent Agent LLM 记忆感知规划使用工具 LLM是大语言模型&#xff0c;prompt提示词影响LLM的输出质量 描述需求——>背景——>解决思路&#xff0c;提示词文档。 当有明确的需求和实现需求的路径时&#xff0c;可以通过搭建工作流来完成标准化任务为…

Multi-Wing Optimiser风扇选型软件介绍

Multi-Wing Optimiser风扇选型软件

一、YOLO V10安装、使用、训练大全

YOLO V10安装、使用、训练大全 一、下载官方源码二、配置conda环境三、安装YOLOV10依赖四、使用官方YOLO V10模型1.下载模型2.使用模型2.1 图片案例 五、制作数据集1.数据集目录结构2.标注工具2.1 安装标注工具2.2 运行标注工具2.3 设置自动保存2.4 切换yolo模式2.5 开始标注2.…

Python不使用元类的ORM实现

不使用元类的简单ORM实现 在 Python 中&#xff0c;ORM&#xff08;Object-Relational Mapping&#xff09;是一种将对象和数据库之间的映射关系进行转换的技术&#xff0c;使得通过面向对象的方式来操作数据库更加方便。通常&#xff0c;我们使用元类&#xff08;metaclass&a…