[AI 大模型] Meta LLaMA-2

文章目录

    • [AI 大模型] Meta LLaMA-2
      • 简介
      • 模型架构
      • 发展
      • 新技术和优势
      • 示例


[AI 大模型] Meta LLaMA-2

在这里插入图片描述

简介

Meta LLaMA-2 是 Meta 推出的第二代开源大型语言模型(LLM),旨在为研究和商业应用提供强大的自然语言处理能力。

LLaMA-2 系列模型包括从 7 亿到 70 亿参数的多种规模,能够处理各种自然语言处理任务,如文本生成、对话、编程代码等。

模型架构

LLaMA-2 基于自回归 Transformer 架构,采用了优化的注意力机制和分组查询注意力(Grouped-Query Attention),以提高推理速度和效率。

此外,LLaMA-2 还使用了监督微调(SFT)和人类反馈强化学习(RLHF)来优化对话应用的性能

这种架构使得 LLaMA-2 能够在处理长达 4096 个 token 的上下文时保持高效。

在这里插入图片描述

发展

LLaMA-2 的开发经历了多个阶段,从最初的 LLaMA 1 到最新的 LLaMA-2,Meta 不断改进模型的性能和安全性。

LLaMA-2 在训练数据量上增加了 40%,并且能够处理两倍于前代模型的内容。

此外,Meta 还与 Microsoft 合作,通过 Azure 云服务和 Windows 操作系统分发 LLaMA-2

新技术和优势

  1. 高质量数据集:LLaMA-2 使用了高质量的公共数据集进行训练,确保了模型的准确性和可靠性。
  2. 分组查询注意力:这种技术提高了模型的推理速度,使得 LLaMA-2 能够更快地处理大规模数据。
  3. 人类反馈强化学习:通过 RLHF 技术,LLaMA-2 在对话应用中表现出色,能够更好地理解和响应用户的需求。
  4. 开源和商业应用:LLaMA-2 作为开源模型,允许研究和商业应用,促进了 AI 技术的普及和创新。
  5. 安全性:LLaMA-2 在设计中注重安全性,具有低 AI 安全违规率,确保模型在各种应用中的安全性。

在这里插入图片描述

示例

以下是如何使用 LLaMA-2 API 进行开发的示例:

示例 1:文本生成

import torch
from transformers import LlamaForCausalLM, LlamaTokenizer# 加载模型和分词器
model_name = "meta-llama/Llama-2-7b"
tokenizer = LlamaTokenizer.from_pretrained(model_name)
model = LlamaForCausalLM.from_pretrained(model_name)# 创建文本生成请求
prompt = "写一篇关于人工智能未来发展的文章。"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(inputs.input_ids, max_length=150)# 输出生成的文本
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

示例 2:对话生成

import torch
from transformers import LlamaForCausalLM, LlamaTokenizer# 加载模型和分词器
model_name = "meta-llama/Llama-2-7b-chat"
tokenizer = LlamaTokenizer.from_pretrained(model_name)
model = LlamaForCausalLM.from_pretrained(model_name)# 创建对话生成请求
prompt = "用户:你好!\n助手:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(inputs.input_ids, max_length=100)# 输出生成的对话
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

示例 3:情感分析

import torch
from transformers import LlamaForSequenceClassification, LlamaTokenizer# 加载模型和分词器
model_name = "meta-llama/Llama-2-7b-sentiment"
tokenizer = LlamaTokenizer.from_pretrained(model_name)
model = LlamaForSequenceClassification.from_pretrained(model_name)# 创建情感分析请求
text = "我今天感觉非常开心!"
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)# 输出情感分析结果
print(outputs.logits.argmax(dim=-1).item())

Meta LLaMA-2 的推出标志着 AI 技术的又一次飞跃,为开发者和企业提供了强大的工具,推动了 AI 应用的广泛普及和创新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/42907.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python29 Tensorflow的基本知识和使用

1. TensorFlow TensorFlow 是一个开源的机器学习框架,由 Google Brain 团队开发。它用于数据流图的计算,尤其擅长深度学习任务。在 TensorFlow 中,数据流图(Data Flow Graph)是其核心概念之一,它定义了计算…

Blackbox AI : 全新的人工智能编码助手 您的高效AI开发全能助手

🎬 鸽芷咕:个人主页 🔥 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 引入 提起AI 智能编码助手,相信到了如今大家都不陌生。其对我们开发的代码时的效率有显著的提升,可以说…

效果惊人!LivePortrait开源数字人技术,让静态照片生动起来

不得了了,快手已经不是众人所知的那个短视频娱乐平台了。 可灵AI视频的风口尚未过去,又推出了LivePortrait--开源的数字人项目。LivePortrait让你的照片动起来,合成逼真的动态人像视频,阿里通义EMO不再是唯一选择。 让图像动起来 LivePortrait 主要提供了对眼睛和嘴唇动作的…

Mattermost:一个强大的开源协作平台

Mattermost是一个强大的开源协作平台,基于云原生架构,为企业级用户提供安全、可扩展且自托管的消息传递解决方案。 一、平台特点 开源与定制性:Mattermost是一个开源项目,用户可以根据自身需求定制界面、添加功能或扩展其功能&am…

matlab 卷积和多项式乘法

目录 一、算法原理1、原理概述2、主要函数二、代码实现1、通过卷积计算多项式乘法2、向量卷积3、卷积的中心部分三、参考链接一、算法原理 1、原理概述 两个向量 u u u和 v v v的卷积,表示

大屏自适应容器组件 v-scale-screen

在vue中,v-scale-screen可用于大屏项目开发,实现屏幕自适应,可根据宽度自适应,高度自适应,和宽高等比例自适应,全屏自适应。 仓库地址:github国内地址:gitee 一、安装 npm instal…

React setState

老生常谈之setState 是同步的还是异步的? 设想setState是同步的,那也就是每次调用setState都要进行新旧虚拟DOM的对比,然后将差异化的dom更新到页面上,性能损耗很大 所以react把setState设置为了异步,当状态更新时不…

【Unity2D 2022:Audio】添加游戏音乐和音效

一、添加背景音乐 1. 创建空的游戏物体,名为BackgroundMusic 2. 为音频播放器添加音频源(Audio Source)组件 3. 将背景音乐音频赋值到AudioClip(红色) 4. 设置循环播放(蓝色) 二、添加草莓拾取…

springboot封装请求参数json的源码解析

源码位置: org.springframework.web.servlet.mvc.method.annotation.AbstractMessageConverterMethodArgumentResolver#readWithMessageConverters(org.springframework.http.HttpInputMessage, org.springframework.core.MethodParameter, java.lang.reflect.Type…

解答 | http和https的区别,谁更好用

TTP(超文本传输协议)和HTTPS(安全超文本传输协议)的主要区别在于安全性和数据传输的方式。 一、区别 1、协议安全性: HTTP:使用明文形式传输数据,不提供数据加密功能,数据在传输过…

coze搭建工作流和Agent

coze搭建工作流和Agent Agent LLM 记忆感知规划使用工具 LLM是大语言模型,prompt提示词影响LLM的输出质量 描述需求——>背景——>解决思路,提示词文档。 当有明确的需求和实现需求的路径时,可以通过搭建工作流来完成标准化任务为…

Multi-Wing Optimiser风扇选型软件介绍

Multi-Wing Optimiser风扇选型软件

一、YOLO V10安装、使用、训练大全

YOLO V10安装、使用、训练大全 一、下载官方源码二、配置conda环境三、安装YOLOV10依赖四、使用官方YOLO V10模型1.下载模型2.使用模型2.1 图片案例 五、制作数据集1.数据集目录结构2.标注工具2.1 安装标注工具2.2 运行标注工具2.3 设置自动保存2.4 切换yolo模式2.5 开始标注2.…

Python不使用元类的ORM实现

不使用元类的简单ORM实现 在 Python 中,ORM(Object-Relational Mapping)是一种将对象和数据库之间的映射关系进行转换的技术,使得通过面向对象的方式来操作数据库更加方便。通常,我们使用元类(metaclass&a…

香橙派5plus上跑云手机方案二 waydroid

前言 上篇文章香橙派5plus上跑云手机方案一 redroid(带硬件加速)说了怎么跑带GPU加速的redroid方案,这篇说下怎么在香橙派下使用Waydroid。 温馨提示 虽然能运行,但是体验下来只能用软件加速,无法使用GPU加速,所有会很卡。而且…

linux磁盘分区管理

首先关机状态下,先配置硬盘 硬盘分区管理 识别硬盘 》分区规划 》 格式化 》 挂载使用 [rootlocalhost ~]# lsblk 查看硬盘 分区划分(m帮助, p 查看分区, n 创建分区, d 删除分区, q 退出, w 保存, g gpt分区) [roo…

绝区陆--大语言模型的幻觉问题是如何推动科学创新

介绍 大型语言模型 (LLM)(例如 GPT-4、LLaMA-2、PaLM-2、Claude-2 等)已展示出为各种应用生成类似人类文本的出色能力。然而,LLM 的一个鲜为人知的方面是它们倾向于“产生幻觉”或生成不正确或没有根据的事实陈述。我不认为这仅仅是一个限制…

前端构建工具(webpackvite)

这里写目录标题 构建工具webpack介绍配置文件简介entryoutputloaderbabel插件开发服务器(webpack-dev-server)soureMap vite 构建工具 当我们习惯了在node中编写代码的方式后,在回到前端编写html、css、js这些东西会感觉到各种的不便。比如:…

12-阿里云单细胞处理-PBMC(by-jmzeng)

scRNA_10X/seurat-v2/sup-patient1-PBMC.Rmd at master jmzeng1314/scRNA_10X (github.com) s04-运行seurat流程处理一万个单细胞转录组数据并自动化出报告_哔哩哔哩_bilibili #section 3已更新#「生信技能树」单细胞公开课2021_哔哩哔哩_bilibili 上传读取数据 可以配置租…

R包: phyloseq扩增子统计分析利器

介绍 phyloseq包对多类型数据的综合软件,并其对这些数据提供统计分析和可视化方法。 微生物数据分析的主要挑战之一是如何整合不同类型的数据,从而对其进行生态学、遗传学、系统发育学、多元统计、可视化和检验等分析。同时,由于同行之间需要…