Python数据分析-天气类型预测分析

一、研究背景

近年来,随着全球气候变化的加剧,天气预报和气象预测变得越来越重要。准确的天气预测不仅能够帮助人们做好日常生活的安排,还能在农业生产、防灾减灾等方面起到关键作用。随着大数据技术和机器学习算法的快速发展,利用数据驱动的方法进行天气类型预测已经成为一种趋势。本研究基于历史气象数据,利用多种气象指标,如温度、湿度、风速、降水量、云量、气压、紫外线指数等,通过机器学习算法对天气类型进行预测,以期提高天气预报的准确性和实用性。

二、研究意义

本研究的意义主要体现在以下几个方面:

  1. 提升天气预报的准确性:通过机器学习算法对历史气象数据进行分析,可以发现数据中的潜在模式,从而提高天气预报的准确性。
  2. 增强防灾减灾能力:准确的天气预报可以帮助政府和相关部门提前采取防灾减灾措施,减少因恶劣天气造成的损失。
  3. 促进农业生产:精准的气象预测能够帮助农民合理安排播种、施肥和收获等农业活动,提高农业生产效率。
  4. 推动气象数据应用:通过对气象数据的深入分析和应用,可以促进气象数据在更多领域的应用,推动相关技术的发展。

三、实证分析

代码和数据集

首先导入数据包

import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt
import seaborn as sns
import os
import pandas as pd
import numpy as npimport matplotlib.pyplot as plt
import seaborn as snsfrom sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score# Classification models
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNBimport warnings
warnings.filterwarnings('ignore')  

 读取展示数据集

data=pd.read_csv('weather_classification_data.csv')
data.head(5)

 查看数据类型

描述性统计分析

data.describe()

 查看分类变量汇总

接下来对数据可视化

plt.figure(figsize=(12, 8))plt.subplot(2, 2, 1)
sns.histplot(data['Temperature'], bins=20, kde=True, color='#835C3B', alpha=0.7)
plt.title('Distribution of Temperature')
plt.xlabel('Temperature (Celsius)')
plt.ylabel('Count')plt.subplot(2, 2, 2)
sns.histplot(data['Humidity'], bins=20, kde=True, color='#3F000F', alpha=0.7)
plt.title('Distribution of Humidity')
plt.xlabel('Humidity (%)')
plt.ylabel('Count')plt.subplot(2, 2, 3)
sns.histplot(data['Wind Speed'], bins=20, kde=True, color='#1F6357', alpha=0.7)
plt.title('Distribution of Wind Speed')
plt.xlabel('Wind Speed (km/h)')
plt.ylabel('Count')plt.subplot(2, 2, 4)
sns.histplot(data['Precipitation (%)'], bins=20, kde=True, color='#3C565B', alpha=0.7)
plt.title('Distribution of Precipitation')
plt.xlabel('Precipitation (%)')
plt.ylabel('Count')plt.tight_layout()
plt.show()

 

可以发现

温度:温度分布向右倾斜,这意味着对较高温度的观测值多于对较低温度的观测值。最常见的温度在 20 到 40 摄氏度之间。
湿度:最常见的湿度水平在 60% 到 100% 之间。
风速:风速分布向右倾斜,最常见的观测值在0到20(km/h)之间。
降水:最常见的降水量在0%至20%之间。

对分类变量的图进行计数

plt.figure(figsize=(16, 10))
plt.subplot(2, 2, 1)
sns.countplot(x='Cloud Cover', data=data, palette='Set2')
plt.title('Count of Cloud Cover')
plt.subplot(2, 2, 2)
sns.countplot(x='Season', data=data, palette='Set1')
plt.title('Count of Season')
plt.subplot(2, 2, 3)
sns.countplot(x='Location', data=data, palette='Set3')
plt.title('Count of Location')
plt.subplot(2, 2, 4)
sns.countplot(x='Weather Type', data=data, palette='Pastel1')
plt.title('Count of Weather Type')
plt.tight_layout()
plt.show()

接下来进行数据清洗和预处理

# # 定义标准缩放的数值特征
numeric_features = ['Temperature', 'Humidity', 'Wind Speed', 'Precipitation (%)', 'Atmospheric Pressure', 'UV Index', 'Visibility (km)']# 标准化
scaler = StandardScaler()X_train_scaled = X_train.copy()  
X_train_scaled[numeric_features] = scaler.fit_transform(X_train[numeric_features])

用于相关性分析的独立数值特征

mask = np.triu(np.ones_like(corr_matrix, dtype=bool))plt.figure(figsize=(8,6))
sns.heatmap(corr_matrix, mask=mask, annot=True, cmap='copper', fmt='.2f', linewidths=0.5)
plt.title('Correlation Matrix Heatmap (Numerical Features)')
plt.show()

 

温度与大气压力、紫外线指数和能见度呈正相关。降水量和湿度之间最正相关。最负相关的是湿度和能见度。 

接下来建立模型和对模型评价

classifiers = {'Logistic Regression': LogisticRegression(random_state=42),'Decision Tree': DecisionTreeClassifier(random_state=42),'Random Forest': RandomForestClassifier(random_state=42),'Gradient Boosting': GradientBoostingClassifier(random_state=42),'SVM': SVC(random_state=42),'KNN': KNeighborsClassifier(),'Naive Bayes': GaussianNB()
}
for clf_name, clf in classifiers.items():print(f"Training {clf_name}...")clf.fit(X_train_scaled, y_train)y_pred = clf.predict(X_test_scaled)

 逻辑回归

决策树

随机森林

梯度提升

支持向量机

KNN

朴素贝叶斯

决策树、随机森林和梯度提升分类器可实现最高的准确度和 F1 分数,表明在所有天气类型下都具有强大的性能。大多数分类器在不同类别(多云、雨天、下雪、晴天)中表现出平衡的精度和召回率,这表明它们可以很好地泛化到数据集中的所有天气类型。

接下来查看特征重要性

importance = rf_classifier.feature_importances_
feature_names = X.columnsfeature_importance_df = pd.DataFrame({'Feature': feature_names, 'Importance': importance})
feature_importance_df = feature_importance_df.sort_values(by='Importance', ascending=False)print("Feature Importance (Random Forest):")
feature_importance_df

画出特征重要性图

plt.figure(figsize=(10, 6))
sns.barplot(x='Importance', y='Feature', data=feature_importance_df, palette='copper')
plt.title('Feature Importance - Random Forest Classifier')
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.show()

 温度的重要性最高,表明它对天气类型的预测有很大影响。这与温度在决定天气条件方面起着关键作用的常识相一致。 能见度(km)和降水量(%)的重要性紧随其后,表明这些因素对天气分类有重大贡献,特别是在确定降水的清晰度和存在方面。 紫外线指数和大气压力也显示出显着的重要性,表明它们在预测某些天气模式中的作用。 与此模型中的其他要素相比,云量、湿度、季节、风速和位置的重要性值相对较低。这并不一定意味着它们总体上不那么重要,但表明它们对这个特定模型的预测影响较小。

四、结论

通过本研究,我们利用包含温度、湿度、风速、降水量、云量、气压、紫外线指数、能见度等多个气象指标的数据集,采用机器学习算法对天气类型进行了预测。研究结果表明,所采用的机器学习模型能够有效地识别和预测不同类型的天气。具体结论如下:

  1. 模型的有效性:所使用的模型在训练数据和测试数据上均表现出较高的预测准确性,证明了模型在天气类型预测中的有效性。
  2. 特征重要性分析:通过对模型特征的重要性进行分析,发现温度、湿度和降水量是影响天气类型的主要因素,而云量和气压在某些天气类型中也具有显著的影响。
  3. 应用前景:本研究的方法和结果为实际应用提供了参考,可以应用于更大规模的数据集和更多种类的天气类型预测中,为提升天气预报的精准度提供了新的途径。

总之,本研究通过数据驱动的方法对天气类型进行了有效预测,为天气预报和相关应用提供了重要参考和借鉴。未来,可以进一步结合更为复杂的气象数据和更先进的机器学习算法,提升预测模型的性能和适用性。

 创作不易,希望大家多点赞关注评论!!!(类似代码或报告定制可以私信)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/42913.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

科普文:深入理解负载均衡(四层负载均衡、七层负载均衡)

概叙 网络模型:OSI七层模型、TCP/IP四层模型、现实的五层模型 应用层:对软件提供接口以使程序能使用网络服务,如事务处理程序、文件传送协议和网络管理等。(HTTP、Telnet、FTP、SMTP) 表示层:程序和网络之…

基于vue的地图特效(飞线和标注)

这段代码的主要功能是在页面加载完成后,初始化一个 echarts 地图图表,并配置了相关的地理数据、散点数据、线条数据以及样式效果,最后在指定的 div 元素中进行展示。 需要再vue中的框架实现,不能单独直接运行。 标注 type: effe…

Python30 使用Gensim库实现Word2Vec对文本进行处理

1.Word2Vec Word2Vec 是一种将词语表示为向量的技术,能够捕捉词语之间的语义关系。它由 Google 的 Tomas Mikolov 等人在 2013 年提出,广泛应用于自然语言处理任务中。其核心概念主要包括: 词嵌入(Word Embeddings) …

使用昇腾芯片进行多卡训推时使用hccl_tools.py为npu分配ip报错问题解决办法

目录 问题描述问题产生原因解决办法最终执行并验证参考网站命令扩展 问题描述 昇腾芯片(910b/310p等)进行多卡训练或者推理时需要先获取并配置每张npu的ip信息,因此需要执行类似下面问题: python mindformers/tools/hccl_tools.…

[AI 大模型] Meta LLaMA-2

文章目录 [AI 大模型] Meta LLaMA-2简介模型架构发展新技术和优势示例 [AI 大模型] Meta LLaMA-2 简介 Meta LLaMA-2 是 Meta 推出的第二代开源大型语言模型(LLM),旨在为研究和商业应用提供强大的自然语言处理能力。 LLaMA-2 系列模型包括从…

Python29 Tensorflow的基本知识和使用

1. TensorFlow TensorFlow 是一个开源的机器学习框架,由 Google Brain 团队开发。它用于数据流图的计算,尤其擅长深度学习任务。在 TensorFlow 中,数据流图(Data Flow Graph)是其核心概念之一,它定义了计算…

Blackbox AI : 全新的人工智能编码助手 您的高效AI开发全能助手

🎬 鸽芷咕:个人主页 🔥 个人专栏: 《C干货基地》《粉丝福利》 ⛺️生活的理想,就是为了理想的生活! 引入 提起AI 智能编码助手,相信到了如今大家都不陌生。其对我们开发的代码时的效率有显著的提升,可以说…

效果惊人!LivePortrait开源数字人技术,让静态照片生动起来

不得了了,快手已经不是众人所知的那个短视频娱乐平台了。 可灵AI视频的风口尚未过去,又推出了LivePortrait--开源的数字人项目。LivePortrait让你的照片动起来,合成逼真的动态人像视频,阿里通义EMO不再是唯一选择。 让图像动起来 LivePortrait 主要提供了对眼睛和嘴唇动作的…

Mattermost:一个强大的开源协作平台

Mattermost是一个强大的开源协作平台,基于云原生架构,为企业级用户提供安全、可扩展且自托管的消息传递解决方案。 一、平台特点 开源与定制性:Mattermost是一个开源项目,用户可以根据自身需求定制界面、添加功能或扩展其功能&am…

matlab 卷积和多项式乘法

目录 一、算法原理1、原理概述2、主要函数二、代码实现1、通过卷积计算多项式乘法2、向量卷积3、卷积的中心部分三、参考链接一、算法原理 1、原理概述 两个向量 u u u和 v v v的卷积,表示

大屏自适应容器组件 v-scale-screen

在vue中,v-scale-screen可用于大屏项目开发,实现屏幕自适应,可根据宽度自适应,高度自适应,和宽高等比例自适应,全屏自适应。 仓库地址:github国内地址:gitee 一、安装 npm instal…

React setState

老生常谈之setState 是同步的还是异步的? 设想setState是同步的,那也就是每次调用setState都要进行新旧虚拟DOM的对比,然后将差异化的dom更新到页面上,性能损耗很大 所以react把setState设置为了异步,当状态更新时不…

【Unity2D 2022:Audio】添加游戏音乐和音效

一、添加背景音乐 1. 创建空的游戏物体,名为BackgroundMusic 2. 为音频播放器添加音频源(Audio Source)组件 3. 将背景音乐音频赋值到AudioClip(红色) 4. 设置循环播放(蓝色) 二、添加草莓拾取…

springboot封装请求参数json的源码解析

源码位置: org.springframework.web.servlet.mvc.method.annotation.AbstractMessageConverterMethodArgumentResolver#readWithMessageConverters(org.springframework.http.HttpInputMessage, org.springframework.core.MethodParameter, java.lang.reflect.Type…

解答 | http和https的区别,谁更好用

TTP(超文本传输协议)和HTTPS(安全超文本传输协议)的主要区别在于安全性和数据传输的方式。 一、区别 1、协议安全性: HTTP:使用明文形式传输数据,不提供数据加密功能,数据在传输过…

coze搭建工作流和Agent

coze搭建工作流和Agent Agent LLM 记忆感知规划使用工具 LLM是大语言模型,prompt提示词影响LLM的输出质量 描述需求——>背景——>解决思路,提示词文档。 当有明确的需求和实现需求的路径时,可以通过搭建工作流来完成标准化任务为…

Multi-Wing Optimiser风扇选型软件介绍

Multi-Wing Optimiser风扇选型软件

一、YOLO V10安装、使用、训练大全

YOLO V10安装、使用、训练大全 一、下载官方源码二、配置conda环境三、安装YOLOV10依赖四、使用官方YOLO V10模型1.下载模型2.使用模型2.1 图片案例 五、制作数据集1.数据集目录结构2.标注工具2.1 安装标注工具2.2 运行标注工具2.3 设置自动保存2.4 切换yolo模式2.5 开始标注2.…

Python不使用元类的ORM实现

不使用元类的简单ORM实现 在 Python 中,ORM(Object-Relational Mapping)是一种将对象和数据库之间的映射关系进行转换的技术,使得通过面向对象的方式来操作数据库更加方便。通常,我们使用元类(metaclass&a…

香橙派5plus上跑云手机方案二 waydroid

前言 上篇文章香橙派5plus上跑云手机方案一 redroid(带硬件加速)说了怎么跑带GPU加速的redroid方案,这篇说下怎么在香橙派下使用Waydroid。 温馨提示 虽然能运行,但是体验下来只能用软件加速,无法使用GPU加速,所有会很卡。而且…