横截面交易策略:概念与示例

 

数量技术宅团队在CSDN学院推出了量化投资系列课程

欢迎有兴趣系统学习量化投资的同学,点击下方链接报名:

量化投资速成营(入门课程)

Python股票量化投资

Python期货量化投资

Python数字货币量化投资

C++语言CTP期货交易系统开发

数字货币JavaScript语言量化交易系统开发


什么是横截面策略

横截面交易策略(Cross-Sectional Trading Strategy)是一种金融市场上的交易策略,它是基于不同资产之间的相对价值或其他因子的差异来进行投资决策。这种策略的核心思想是比较和选择不同资产或证券之间的差异,以寻求获得超额收益。以下是横截面交易策略的关键点:

  1. 聚焦相对价值: 横截面交易策略不是基于个别资产的绝对表现,而是关注资产之间的相对表现。策略试图识别在一组相关资产中表现最好或最差的资产,然后采取相应多空的头寸。

  2. 标的多元化: 通常,横截面交易策略涉及多个资产或证券,而不是仅仅关注一个特定的资产。多元化有助于分散风险并提高投资组合的稳定性。

  3. 横截面因子: 横截面交易策略使用横截面因子来解释资产或证券之间的差异。这些因素包罗万象,包括但不限于市场风险、行业因素、公司规模、估值等。

  4. 市场中性或方向性: 这种策略可以是市场中性的,即在多头头寸(买入)和空头头寸(卖空)之间的市值严格保持平衡,以降低方向性的波动市场风险;也可以是带多头或空头敞口的方向性策略。

  5. 交易频率: 交易频率可以根据投资者的偏好而变化。有些横截面策略基于基本面因子,往往是长期的,而另一些策略基于量价或高频因子,也可以是短期的、根据市场条件进行频繁交易。

横截面交易策略是一种相比较时间序列策略来说,更为复杂的策略,要求投资者有深刻的有效因子挖掘能力,以便在不同资产之间识别和利用相对价值差异,以期获得超额收益。策略通常用于量化投资、对冲基金和其他专业投资领域。

如何构建横截面交易策略

接下来,我们先简要介绍构建横截面交易策略的基本步骤,再通过一个具体示例,介绍构建横截面交易策略的总体过程。构建横截面交易策略的基本步骤如下:

  1. 目标设定和限制条件: 开始之前,明确投资预期年化收益率、最大风险承受能力、可用本金等因素。

  2. 资产和标的选择: 选择您打算交易的资产类别,可以是股票、债券、商品或数字货币其他金融工具。

  3. 数据采集和清洗: 收集相关市场数据,包括历史价格、交易量、财务指标和宏观经济数据等等。确保数据质量高,进行适当的清洗和预处理。

  4. 因子识别和模型构建: 建立一个量化模型来识别横截面差异的关键因子。因子可以是市场风险因子、行业因子、公司规模因子、估值因子等等。使用统计分析、机器学习等模型来构建。

  5. 信号生成和策略制定: 基于您的模型,生成交易信号。确定何时买入、卖出或持有资产。

  6. 风险管理和仓位控制: 制定有效的风险管理策略,包括头寸规模、止损规则、仓位管理等,加入整体模型中以确保能够管理潜在的损失。

  7. 回测和优化: 使用历史数据对策略进行回测,评估其性能。通过调整参数和规则来优化策略,以提高其稳健性和盈利潜力。

  8. 实盘执行策略: 根据生成的交易信号执行交易。这可能涉及到使用量化交易接口来进行实盘的买卖操作。

  9. 监控和调整: 持续监控策略的表现,适时调整以应对市场变化。这可能需要及时更新模型或策略参数。

构建横截面交易策略需要专业的分析、编程和数学技能,以及对市场的深刻理解。在实施之前,强烈建议进行充分的研究和测试,以确保您的策略在真实市场环境中表现良好。

一个股票横截面交易策略的例子

以下是一个简单的基于横截面数据的股票交易策略示例,使用Python编程语言和Pandas库来实现。这个策略将选择在特定日期买入并持有表现最好的若干只股票,然后在一段时间后卖出。

需要注意的是,这个示例策略只是用于说明横截面交易的基本概念,并不代表其获利性。实际的策略可能会更复杂,并考虑更多的横截面因子与风险管理。

策略思路:

  1. 选取特定日期的股票数据,包括股票代码、市值和收盘价。

  2. 根据市值对股票进行排名,选择市值最高的前N只股票。

  3. 计算持有期间的收益率。

  4. 如果收益率为正,则买入并持有这些股票,否则不持有。

  5. 持有期结束后卖出所有股票。

import pandas as pd# 示例数据:股票代码、市值、收盘价、日期
data = {'Ticker': ['AAPL', 'GOOGL', 'MSFT', 'AMZN', 'FB'],'MarketCap': [2000, 1500, 1800, 2200, 900],  # 市值(假设以亿美元为单位)'ClosePrice': [150, 2500, 300, 3500, 330],  # 收盘价(假设以美元为单位)'Date': ['2023-01-01', '2023-01-01', '2023-01-01', '2023-01-01', '2023-01-01']
}# 创建DataFrame
df = pd.DataFrame(data)# 选择特定日期的股票数据
selected_date = '2023-01-01'
selected_stocks = df[df['Date'] == selected_date]# 根据市值排序并选择市值最高的前N只股票
N = 2
selected_stocks = selected_stocks.sort_values(by='MarketCap', ascending=False).head(N)# 模拟持有期间的收益率
holding_period = 30  # 假设持有期为30天
end_date = pd.to_datetime(selected_date) + pd.DateOffset(days=holding_period)
end_date_str = end_date.strftime('%Y-%m-%d')# 获取持有期结束时的股票数据
end_date_stocks = df[df['Date'] == end_date_str]# 计算收益率
selected_stocks['Return'] = (end_date_stocks['ClosePrice'].values - selected_stocks['ClosePrice'].values) / selected_stocks['ClosePrice'].values# 执行交易
for index, row in selected_stocks.iterrows():if row['Return'] > 0:print(f"买入 {row['Ticker']},收益率为 {row['Return']:.2%}")else:print(f"不持有 {row['Ticker']},收益率为 {row['Return']:.2%}")

更多改进

上述策略示例,尚未考虑包括风险管理、交易成本、更多的因子等。我们尝试加入一些风险控制的规则,以试策略更加完善。 以下是修改后的股票横截面交易示例策略,其中包括了动态权重分配和止损规则。

改进后的策略会选择在特定日期买入并持有表现最好的若干只股票,然后在一段时间后卖出。与此同时,它会根据止损规则来限制亏损。

import pandas as pd# 示例数据:股票代码、市值、收盘价、日期
data = {'Ticker': ['AAPL', 'GOOGL', 'MSFT', 'AMZN', 'FB'],'MarketCap': [2000, 1500, 1800, 2200, 900],  # 市值(假设以亿美元为单位)'ClosePrice': [150, 2500, 300, 3500, 330],  # 收盘价(假设以美元为单位)'Date': ['2023-01-01', '2023-01-01', '2023-01-01', '2023-01-01', '2023-01-01']
}# 创建DataFrame
df = pd.DataFrame(data)# 选择特定日期的股票数据
selected_date = '2023-01-01'
selected_stocks = df[df['Date'] == selected_date]# 根据多个因素排序并选择市值最高的前N只股票
N = 2
selected_stocks = selected_stocks.sort_values(by=['MarketCap', 'ClosePrice'], ascending=[False, False]).head(N)# 模拟持有期间的收益率
holding_period = 30  # 假设持有期为30天
end_date = pd.to_datetime(selected_date) + pd.DateOffset(days=holding_period)
end_date_str = end_date.strftime('%Y-%m-%d')# 获取持有期结束时的股票数据
end_date_stocks = df[df['Date'] == end_date_str]# 计算收益率
selected_stocks['Return'] = (end_date_stocks['ClosePrice'].values - selected_stocks['ClosePrice'].values) / selected_stocks['ClosePrice'].values# 执行交易策略
initial_portfolio_value = 1000000  # 初始投资资金(假设以美元为单位)
portfolio_value = initial_portfolio_valuefor index, row in selected_stocks.iterrows():ticker = row['Ticker']stock_price = row['ClosePrice']weight = row['MarketCap'] / selected_stocks['MarketCap'].sum()  # 动态权重分配# 假设止损规则:如果亏损超过5%,则卖出该股票stop_loss = 0.05if row['Return'] < -stop_loss:weight = 0  # 不持有该股票stock_position = portfolio_value * weightstock_return = stock_position * (end_date_stocks[end_date_stocks['Ticker'] == ticker]['ClosePrice'].values[0] - stock_price) / stock_priceportfolio_value += stock_returnprint(f"买入 {ticker},权重 {weight:.2%},收益率 {stock_return:.2%}")print(f"持有期结束后,投资组合总价值为 {portfolio_value:.2f}")

在这个示例中,我们综合考虑了市值和收盘价来选择股票,并引入了动态权重分配和止损规则来调整投资组合。加入的风控逻辑,有助于控制亏损并优化投资组合的表现。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/40657.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构--单链表实现

欢迎光顾我的homepage 前言 链表和顺序表都是线性表的一种&#xff0c;但是顺序表在物理结构和逻辑结构上都是连续的&#xff0c;但链表在逻辑结构上是连续的&#xff0c;而在物理结构上不一定连续&#xff1b;来看以下图片来认识链表与顺序表的差别 这里以动态顺序表…

WGAN(Wassertein GAN)

WGAN E x ∼ P g [ log ⁡ ( 1 − D ( x ) ) ] E x ∼ P g [ − log ⁡ D ( x ) ] \begin{aligned} & \mathbb{E}_{x \sim P_g}[\log (1-D(x))] \\ & \mathbb{E}_{x \sim P_g}[-\log D(x)] \end{aligned} ​Ex∼Pg​​[log(1−D(x))]Ex∼Pg​​[−logD(x)]​ 原始 GAN …

springboot基于Java的超市进销存系统+ LW+ PPT+源码+讲解

第三章系统分析与设计 3.1 可行性分析 一个完整的系统&#xff0c;可行性分析是必须要有的&#xff0c;因为他关系到系统生存问题&#xff0c;对开发的意义进行分析&#xff0c;能否通过本网站来补充线下超市进销存管理模式中的缺限&#xff0c;去解决其中的不足等&#xff0c…

6域名系统DNS

《计算机网络》第7版&#xff0c;谢希仁 每次记不清楚的知识点&#xff0c;通过上网查找&#xff0c;总是只能看到很零碎的答案。最后还是最喜欢看这个版本的书&#xff0c;一看就回忆起来了&#xff0c;逻辑严谨&#xff0c;循循善诱&#xff0c;知识讲解的全面又清晰&#xf…

架构师应该在团队中发挥怎样的作用?

架构师分为5种&#xff1a; 1.企业架构师EA(Enterprise Architect) EA的职责是决定整个公司的技术路线和技术发展方向。 2.基础结构架构师IA(Infrastructure Architect) IA的工作就是提炼和优化技术方面积累和沉淀形成的基础性的、公共的、可复用的框架和组件&#xff0c;这…

Qt 基础组件速学 鼠标和键盘事件

学习目标&#xff1a; 鼠标事件和键盘事件应用 前置环境 运行环境:qt creator 4.12 学习内容和效果演示&#xff1a; 1.鼠标事件 根据鼠标的坐标位置&#xff0c;做出对应的事件。 2.键盘事件 根据键盘的输入做出对应操作 详细主要代码 1.鼠标事件 #include "main…

一文读懂轻量日志收集系统Loki工作原理

Loki 是由 Grafana Labs 开发的日志聚合系统&#xff0c;设计目标是提供一种高效、低成本的日志收集和查询解决方案。与传统的日志系统&#xff08;如 ELK Stack&#xff09;不同&#xff0c;Loki 不会对日志内容进行索引&#xff0c;而是仅对日志的元数据进行索引&#xff0c;…

FTP、http 、tcp

HTTP VS FTP HTTP &#xff1a;HyperText Transfer Protocol 超文本传输协议&#xff0c;是基于TCP协议 FTP&#xff1a; File Transfer Protocol 文件传输协议&#xff0c; 基于TCP协议&#xff0c; 基于UDP协议的FTP 叫做 TFTP HTTP 协议 通过一个SOCKET连接传输依次会话数…

FIND_IN_SET使用案例--[sql语句根据多ids筛选出对应数据]

一 FIND_IN_SET select id,system_ids from intellect_client_info where FIND_IN_SET(5, system_ids) > 0;

Spring Boot 中的监视器是什么?有什么作用?

前言&#xff1a; 监听器相信熟悉 Spring、Spring Boot 的都知道&#xff0c;但是监视器又是什么&#xff1f;估计很多人一脸懵的状态&#xff0c;本篇分享一下 Spring Boot 的监视器。 Spring Boot 系列文章传送门 Spring Boot 启动流程源码分析&#xff08;2&#xff09; …

Apache DolphinScheduler 与 AWS 的 EMR/Redshift 集成实践分享

引言 这篇文章将给大家讲解关于DolphinScheduler与AWS的EMR和Redshift的集成实践&#xff0c;通过本文希望大家能更深入地了解AWS智能湖仓架构&#xff0c;以及DolphinScheduler在实际应用中的重要性。 AWS智能湖仓架构 首先&#xff0c;我们来看一下AWS经典的智能湖仓架构图…

高考选专业,兴趣与就业前景该如何平衡?

从高考结束的那一刻开始&#xff0c;有些家长和学生就已经变得焦虑了&#xff0c;因为他们不知道成绩出来的时候学生应该如何填报志愿&#xff0c;也不知道选择什么样的专业&#xff0c;毕竟大学里面的专业丰富多彩&#xff0c;如何选择确实是一门学问&#xff0c;而对于学生们…

乐清网站建设规划书

乐清是位于浙江省温州市的一个县级市&#xff0c;拥有悠久的历史和丰富的文化底蕴。随着互联网的快速发展&#xff0c;网站建设成为推动乐清经济和文化发展的重要手段。因此&#xff0c;我们认为有必要制定一个全面的乐清网站建设规划书&#xff0c;以促进乐清的经济繁荣和文化…

东芝 TB5128FTG 强大性能的步进电机驱动器

TB5128FTG它以高精度和高效能为设计理念&#xff0c;采用 PWM 斩波方法&#xff0c;并内置时钟解码器。通过先进的 BiCD 工艺制造&#xff0c;这款驱动器提供高达 50V 和 5.0A 的输出额定值&#xff0c;成为广泛应用场景中的强劲解决方案。 主要特性 TB5128FTG 拥有众多确保高…

SAP PS学习笔记01 - PS概述,创建Project和WBS

本章开始学习PS&#xff08;Project System&#xff09;。 1&#xff0c;PS的概述 PS&#xff08;Project System&#xff09;是SAP企业资源规划系统中的一个关键模块&#xff0c;主要用于项目管理。 它提供了一个全面的框架来规划、控制和执行项目&#xff0c;涵盖了从项目启…

竞赛选题 卷积神经网络手写字符识别 - 深度学习

文章目录 0 前言1 简介2 LeNet-5 模型的介绍2.1 结构解析2.2 C1层2.3 S2层S2层和C3层连接 2.4 F6与C5层 3 写数字识别算法模型的构建3.1 输入层设计3.2 激活函数的选取3.3 卷积层设计3.4 降采样层3.5 输出层设计 4 网络模型的总体结构5 部分实现代码6 在线手写识别7 最后 0 前言…

C++内存的一些知识点

一、内存分区 在C中&#xff0c;内存主要分为以下几个区域&#xff1a; 代码区&#xff1a;存放函数体的二进制代码。 全局/静态存储区&#xff1a;存放全局变量和静态变量&#xff0c;这些变量在程序的整个运行期间都存在。常量存储区&#xff1a;存放常量&#xff0c;这些值…

WPF UI 界面布局 魔术棒 文字笔记识别 技能提升 布局功能扩展与自定义 继承Panel的对象,测量与排列 系列七

应用开发第一步 功能分类&#xff1a;页面上的功能区域划分。。。。需求分析 业务逻辑 数据流 功能模块 UI/UX 编码 测试 发布 功能开发与布局 不用显式的方式设定元素的尺寸 不使用屏幕坐标来指定位置 Grid 功能最强大&#xff0c;布局最灵活的容器…

开发个人Go-ChatGPT--5 模型管理 (一)

开发个人Go-ChatGP–5 模型管理 (一) 背景 开发一个chatGPT的网站&#xff0c;后端服务如何实现与大模型的对话&#xff1f;是整个项目中开发困难较大的点。 如何实现上图的聊天对话功能&#xff1f;在开发后端的时候&#xff0c;如何实现stream的响应呢&#xff1f;本文就…

Vue-Router4.0 报“Cannot read property ‘forEach‘ of undefined”

Vue-Router4.0在创建路由时 报“Cannot read property ‘forEach‘ of undefined” 解决办法 将路由规则名称更改为routes&#xff0c;否则报错 import { createWebHashHistory, createRouter } from vue-router; // 创建路由规定 const routes [{path: /login,name: login,co…