基于 Paimon 的袋鼠云实时湖仓入湖实战剖析

在当今数据驱动的时代,企业对数据的实施性能力提出了前所未有的高要求。为了应对这一挑战,构建高效、灵活且可扩展的实时湖仓成为数字化转型的关键。本文将深入探讨袋鼠云数栈如何通过三大核心实践——ChunJun 融合 Flink CDC、MySQL 一键入湖至 Paimon 的实践,以及湖仓一体治理 Paimon 的实践,重塑实时湖仓的架构与管理,为企业打造实时数据分析的新引擎。

Flink CDC(Change Data Capture)是由 Apache Flink 提供的一个流数据集成工具,它允许用户通过 YAML 文件优雅地定义 ETL(Extract, Transform, Load)流程,并自动生成定制化的 Flink 算子和提交 Flink 作业。

Flink CDC 的核心特性包括:端到端数据集成框架、易于构建作业的 API、多表支持、整库同步精确一次语义、增量快照算法等诸多特性。ChunJun 融合 Flink CDC 能够更好支持数据的入湖入仓,带来了多方面的变化:

file · 高吞吐、低延迟:Flink CDC 能够以高吞吐量和低延迟的方式捕获和传输数据库的变更

· 全增量一体化:Flink CDC 支持全量数据和增量数据的同步,无需手动操作即可实现全量快照与增量日志的自动衔接

· 支持异构数据源:Flink CDC 支持多种数据源,可以轻松实现异构数据源的集成,通过 Flink SQL 定义不同类型的 CDC 表,实现数据融合

· 实时性:支持近实时的数据同步,满足对数据时效性要求高的场景

· 链路短组件少:Flink CDC 的架构设计让整个数据捕获和处理的链路变得更为简洁,所涉及的组件数量相对有限,这不但降低了系统的繁杂程度,还削减了学习与运维的成本

MySQL 一键入湖 Paimon 实践

ChunJun 融合 Flink CDC 增加了实时湖仓数据接入的方式,结合 FLink CDC 提供的 MySQL 数据到 Paimon 的数据同步能力,能够高效地将 MySQL 表数据实时写入 Paimon 中。在融合的同时,还支持历史 Json 格式构建任务、脏数据、Mertic、表血缘、可视化配置等功能。

file

接下来通过内部实践案例进行深入分析。

● 采集配置 Flink CDC 来源

实时采集配置 Flink CDC 来源为 MySQL 时,向导模式配置还原范围采用全量+增量模式。

首先,对数据库表进行全表快照读取,生成数据的一致性快照,以同步来源表的历史全量数据。在全量快照读取完成后,会自动切换至增量模式,对数据库的增量变化进行采集。表选择的方式多样,支持整库同步、分库分表同步、单表选择同步,同时也支持通过正则的方式选择表。

对于 DDL 变更,当上游产生 DDL 操作时,若选择支持,下游会自动执行;若选择不支持,则对上游产生的 DDL 做异常捕获,此时任务会失败。搭配告警功能,可及时告知出现异常的情况。出现异常后,需要手动执行 DDL 操作,任务才能恢复正常运行。

file

● 采集配置目标端

目标源通过 HiveMetastore 方式配置目标 Paimon 表。写入表的方式具有一定灵活性,支持手动选择表。对于上游存在多表写入同一下游表的场景,有一定要求,必须保证上下游表结构保持一致。

同时,支持使用相同表名、自定义表名的方式。在同步前,会先创建写入的目标表,如果已存在,则直接使用现成表。表分区方面,通过输入固定的语法,将对应上游的主键表字段作为目标 Piamon 表的分区字段。

file

● 调度运行采集任务

实时采集任务在通过语法检查后,提交至调度运维中运行。采集任务的指标包括 Mertic 输入输出指标展示、脏数据指标以及数据血缘解析等。

file

● 查询入湖数据

通过实时平台中 FlinkSQL 任务所提供的功能,对 Paimon 表进行查询并插入数据。利用 FlinkSQL 的 SqlQuery 功能构建 Select 查询语句,并采用流模式实时查询 Paimon 表,以采集插入数据的情况。

file

湖仓一体治理 Paimon 实践

在构建和维护数据湖与数据仓库(湖仓)的一体化架构进程中,袋鼠云凭借湖仓治理机制,不断推进实时数据湖的优化与完备。

然而,Paimon 在数据处理期间可能会引发数据碎片化的问题,像小文件的急剧增多、过时快照的持续累积以及孤儿文件的出现,这些状况均有可能给数据湖表的读写效率带来极为显著的不良影响。

为有效应对这一挑战,袋鼠云于数栈湖仓一体中引入了文件治理机制,支持定期开展数据整理操作,例如合并小文件、清理过期的数据快照以及清除孤儿文件等。此类治理活动旨在增强数据湖的整体读写性能,保障数据流的高效运行和分析工作的顺利开展。借由这些数据治理手段,袋鼠云能够为湖仓架构的稳定性和性能提供稳固支撑,进而助力企业在大数据时代实现敏捷决策和深度洞察。

元数据管理

● Paimon 分区概览

Paimon 运用了与 Apache Hive 相同的分区理念来对数据进行分离。分区属于一种可选的形式,能够依据日期、城市和部门等特定列的值,将表划分成相关的部分。每个表能够拥有一个或多个分区键,以识别某一特定的分区。分区概览会展示分区的数据记录、文件数量以及文件的大小,并且支持对分区的删除操作。

file

● Paimon 快照概览

快照记录了一个表在某一特定时间点的状态。用户能够借助最新的快照获取一个表的最新数据。利用时间旅行,用户还可以通过较早的快照访问表的先前状态。快照概览展示了当前表的所有快照、最新 snapshot,支持手动创建标签并在列表中展示引用关系,同时支持快照的删除和回滚操作。

file

● Paimon 标签概览

标签是对快照的引用,能够基于某个特定快照创建。用户能够在特定的快照上添加标签,如此一来,即便快照过期且被删除,只要标签仍然存在,就能够通过标签访问到相应的数据。标签概览展示了表的所有历史标签版本、标签与快照的引用关系,并且支持标签的删除操作。

file

湖表治理

● Paimon 小文件合并

随着时间的不断推移,持续的写入操作或许会产生大量的小文件,这将致使查询性能降低,原因在于系统需要打开并读取更多的文件。Compaction 能够通过合并这些小文件,从而减少文件的总数。在数据文件治理中,支持对 Paimon Table、Database 的小文件进行治理。

Compaction Table 支持三种排序策略,通过配置不同的治理方式,支持周期性地对表进行治理。Compaction Database 支持对单个或者多个库执行文件的合并操作。

file

● Paimon 孤儿文件清理

孤儿文件指的是那些不再被任何快照所引用的文件,其可能因异常的写入操作、未完成的事务或者错误的删除操作而出现。清理此类孤儿文件是维系数据湖健康状态的关键环节,毕竟它们会占据存储空间。

袋鼠云实时湖仓能够通过配置表的孤儿文件清理策略,支持清理 24 小时以前的孤儿文件,同时还能够通过配置周期治理,实现周期性地对孤儿文件进行治理。

file

● Paimon 过期快照清理

Paimon Writer 在每次提交数据时,会生成一个或两个快照。这些快照可能包含新增的数据文件,也可能将一些旧的数据文件标记为删除。需要注意的是,即使数据文件被标记为删除,它们也不会立即从物理存储中真正删除。通过配置过期快照清理和过期快照保留数量,可以对快照进行物理存储的删除操作。

file

一键 Hive 表转 Paimon 表

● 原地转表

使用 Spark 内置的 migrate_table 进行表迁移时,会先创建一个临时的 Paimon 表,然后将源表的文件直接移动到该临时表中,接着对临时 Paimon 表进行 rename 操作,使其表名与源表一致,这样原来的 Hive 表就不再存在。

● New 新表

袋鼠云实时湖仓自定义了一个全新的存储过程 migrate_to_target_table ,该存储过程会读取源表的数据,创建目标 Target 表,并把源表的数据写入到新创建的 Target 表中,在此过程中原有的 Hive 表依然得以保留。

file 《行业指标体系白皮书》下载地址:https://www.dtstack.com/resources/1057?src=szsm

《数栈产品白皮书》下载地址:https://www.dtstack.com/resources/1004?src=szsm

《数据治理行业实践白皮书》下载地址:https://www.dtstack.com/resources/1001?src=szsm

想了解或咨询更多有关大数据产品、行业解决方案、客户案例的朋友,浏览袋鼠云官网:https://www.dtstack.com/?src=szcsdn

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/35798.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

我用低代码平台自己搭建了一套MES应用系统,1天搞定!

MES系统是什么 MES系统是一套面向制造企业车间执行层的生产信息化管理系统。它能够为操作人员和管理人员提供计划的执行、跟踪以及所有资源(包括人、设备、物料、客户需求等)的当前状态。通过MES系统可以对从订单下达到产品完成的整个生产过程进行优化管…

Intellij Idea显示回退和前进按钮的方法

方法1 使用快捷键&#xff1a; 回到上一步 ctrl alt <-&#xff08;左方向键&#xff09;回到下一步 ctrl alt ->&#xff08;右方向键&#xff09; 方法2&#xff1a; Preferences -> Appearance & Behavior -> Menus and Toolbars -> Navigation B…

生信技能50 - 本地构建Clinvar数据库VCF变异位点快速搜索功能

1. Clinvar数据库文件下载 参考本人文章: 生信技能40 - Clinvar数据库VCF文件下载和关键信息提取 # 下载GRCh37 vcf wget -c -b https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/clinvar_20240624.vcf.gz wget https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/…

森林草原火险因子综合监测系统解决方案

一、概述 根据应急管理部和国家统计局发布的数据&#xff0c;2023 年全国共接报火灾 74.5 万起&#xff0c;其中森林火灾 328 起&#xff0c;共发生草原火灾 15 起。为应对这一严峻挑战我国正面临着森林草原火险的严重威胁。森林火灾不仅对生态文明建设构成严重威胁&#xff0c…

顶顶通呼叫中心中间件-透传uuid并且导入对端变量到本端(mod_cti基于Freeswitch)

一、配置拨号方案 win-ccadmin配置方法 点击拨号方案 -> 点击进入排队 -> 根据图中配置。如果不是排队转人工是机器人转人工那么就是在机器人那个拨号方案配置&#xff0c;并且需要配置在"cti_robot"之前即可 action"set" data"sip_h_X_tas…

第2章.现场设备的物联网模式--设备网关

第2章.现场设备的物联网模式 本章列出了与现场设备或事物相关的关键模式。阅读本章后&#xff0c;您将能够识别物联网架构中这些模式的存在。它提供了有关模式适合或适用的场景的详细信息&#xff0c;以及需要考虑的约束。这将帮助您相对轻松地理解现有的物联网架构。 本章涵盖…

【论文阅读】Answering Label-Constrained Reachability Queries via Reduction Techniques

Cai Y, Zheng W. Answering Label-Constrained Reachability Queries via Reduction Techniques[C]//International Conference on Database Systems for Advanced Applications. Cham: Springer Nature Switzerland, 2023: 114-131. Abstract 许多真实世界的图都包含边缘标签…

腾讯云TI平台的大模型精调解决方案

腾讯云TI平台的大模型精调解决方案 随着人工智能和大数据技术的快速发展&#xff0c;大模型在各行各业的应用日益广泛。然而&#xff0c;大规模模型的训练和部署面临着诸多挑战&#xff0c;包括训练资源的高效利用、模型训练的稳定性和国产化适配需求。腾讯云TI平台凭借其强大…

从@Param注解开始,深入了解 MyBatis 参数映射的原理

系列文章目录 MyBatis缓存原理 Mybatis plugin 的使用及原理 MyBatisSpringboot 启动到SQL执行全流程 数据库操作不再困难&#xff0c;MyBatis动态Sql标签解析 Mybatis的CachingExecutor与二级缓存 使用MybatisPlus还是MyBaits &#xff0c;开发者应该如何选择&#xff1f; 巧…

js异常处理方案

文章目录 异常处理方案同步代码的异常处理Promise 的异常处理async await 的异常处理 感谢阅读&#xff0c;觉得有帮助可以点点关注点点赞&#xff0c;谢谢&#xff01; 异常处理方案 在JS开发中&#xff0c;处理异常包括两步&#xff1a;先抛出异常&#xff0c;然后捕获异常。…

AI在创造还是毁掉一些东西

今天突然闪现一个念头&#xff0c;AI真的能带来进步吧。AI能个我们带来什么&#xff1f; 突发这个想法的原因是早上乘车的时候看到一个7,8岁的小孩脖子上带了AI学习机。我在想&#xff0c;小孩都通过AI来学习了&#xff0c;还能提升创造吗&#xff1f;这引起了我的担忧。也许AI…

关于0xc000007b的一种解决方案

今天我在安装qview并运行时时&#xff0c;遇到了这个问题。 我在网上查找了许多解决方案&#xff0c;但它们大多都说是某些dll缺失或错误引起的。 这些说法应该是正确的&#xff0c;但我用了dll修复工具后&#xff0c;一点用都没有。 后来捣鼓半天后&#xff0c;我发现很可能…

模拟实现string【C++】

文章目录 全部的实现代码放在了文章末尾准备工作包含头文件定义命名空间和类类的成员变量 构造函数默认构造拷贝构造 重载赋值拷贝函数析构函数迭代器和获取迭代器迭代器获取迭代器 resize【调整size】图解 reserve【调整capacity】empty【判断串是否为空】operator[]appendpus…

高中数学:复数-基础概念及运算法则

一、定义 规定 复数集与实数集之间的关系 二、复数的几何意义 第一种几何意义 第二种几何意义 复数向量的模 共轭复数 三、四则运算 加法 复向量加法 减法 两复数的距离 乘法 除法 四、总结 复数的所有运算法则和实数相同。 向量运算和实数向量运算相同。 怎么简便记忆了&a…

Java SE入门及基础(58) 并发 进程与线程概念

目录 并发 进程和线程 1. 进程和线程 2. 进程 3.线程 总结 并发 并发(Concurrency) Computer users take it for granted that their systems can do more than one thing at a time. They assume that they can continue to work in a word processor, while other app…

大模型火了一年半,AI还在「钻木取火」?

伴随着AI大模型的新一轮进化&#xff0c;这个夏天&#xff0c;人工智能正在引领一波新的热潮。 美国当地时间6月18日&#xff0c;AI大模型的主要显卡芯片供应商英伟达收涨3.51%&#xff0c;市值升至3.34万亿美元&#xff0c;一度超越微软和苹果等科技巨头&#xff0c;成为全球…

ElasticSearch中的BM25算法实现原理及应用分析

文章目录 一、引言二、BM25算法实现原理BM25算法的实现原理1. 词频&#xff08;TF&#xff09;&#xff1a;2. 逆文档频率&#xff08;IDF&#xff09;&#xff1a;3. 长度归一化&#xff1a;4. BM25评分公式&#xff1a; BM25算法示例 三、BM25算法在ElasticSearch中的应用分析…

在 Java 中的使用Selenium 测试框架

Selenium 测试框架&#xff1a;在 Java 中的使用 Selenium 测试框架就是这样一个强大的工具&#xff0c;它为 Web 应用的自动化测试提供了全面且高效的解决方案。 一、Selenium 简介 Selenium 是一个开源的自动化测试工具集&#xff0c;专门用于测试 Web 应用程序。它支持多…

数据结构:队列详解 c++信息学奥赛基础知识讲解

目录 一、队列概念 二、队列容器 三、队列操作 四、代码实操 五、队列遍历 六、案例实操 题目描述&#xff1a; 输入格式&#xff1a; 输出格式&#xff1a; 输入样例&#xff1a; 输出样例&#xff1a; 详细代码&#xff1a; 一、队列概念 队列是一种特殊的线性…

【单片机毕业设计选题24032】-基于STM32的电瓶车电池检测系统

系统功能: 系统上电后显示“欢迎使用电池检测系统请稍后”后两秒后正常显示界面 第一页面第一行显示“系统状态信息” 第二行显示获取到的电压值 第三行显示获取到的电流值 第四行显示获取到的温度和剩余电量值 短按B4按键可切换到第二页面 第二页面第一行显示“温度阈值…