【CVPR 2024】目标检测 与检测相关的论文

3D 目标检测

UniMODE:统一的单目 3D 对象检测

实现包括室内和室外场景的统一单目 3D 对象检测在机器人导航等应用中具有重要意义。然而,涉及数据的各种场景来训练模型会带来挑战,因为它们具有显著不同的特性,例如不同的几何特性和异构的域分布。为了解决这些挑战,我们构建了一种基于鸟瞰图(BEV)检测范式的检测器。

LaneCPP:使用物理优先级的连续 3D 车道检测

单目 3D 车道检测已成为自动驾驶领域的一个基本问题,自动驾驶包括寻找路面和定位车道标线的任务。

MonoDiff:使用扩散模型的单目 3D 对象检测和姿势估计

由于缺乏 3D 感知带来的高度不确定性,从单视图像中进行 3D 目标检测和姿态估计是具有挑战性的。作为一种解决方案,最近的单目 3D 检测方法利用诸如立体图像对和 LiDAR 点云等额外的模式来增强图像特征,但代价是额外的注释成本。我们建议使用扩散模型来学习单目 3D 检测的有效表示,而不需要额外的模式或训练数据。我们提出了一个新的框架 MonoDiff,它使用反向扩散过程来估计 3D 边界框和方向。

跨数据集 3D 目标检测的无监督域自适应伪标签精炼

最近的自训练技术在用于 3D 对象检测的无监督区域自适应(3D UDA)方面显示出显著的改进。这些技术通常选择伪标签,即 3D 框来监督目标域的模型。然而,这种选择过程不可避免地引入了不可靠的 3D 框,其中 3D 点不能被确定地分配为前景或背景。以前的技术通过将这些框重新加权为伪标签来缓解这一问题,但这些框仍然会毒化训练过程。为了解决这一问题,本文提出了一种新的伪标签精炼框架。

VSRD:用于弱监督3D目标检测的实例感知体积轮廓绘制

单目 3D 对象检测由于其在单目深度估计中固有的不适定性,在 3D 场景理解中构成了重大挑战。现有的方法在很大程度上依赖于使用丰富的 3D 标签的监督学习,这些标签通常是通过在激光雷达点云上进行昂贵且劳动密集的注释来获得的。为了解决这个问题,我们提出了一种新的弱监督 3D 对象检测框架,称为 VSRD(检测的体积轮廓绘制),用于训练没有任何 3D 监督但只有弱 2D 监督的 3D 对象检测器。

海鸟:具有骰子丢失的鸟瞰图分割改进了大型物体的单目 3D 检测

单目 3D 探测器在汽车和较小物体上实现了卓越的性能。然而,它们在较大物体上的性能下降会导致致命事故。一些人将失败归因于训练数据稀缺或大型物体的感受野要求。在这篇文章中,我们强调了这个研究不足的大目标的泛化问题。我们发现,即使在几乎平衡的数据集上,现代正面探测器也很难推广到大型物体。我们认为,失败的原因是深度回归损失对较大物体噪声的敏感性。

HUNTER:通过将知识从合成实例转移到真实场景,实现无人监督的以人为中心的 3D 检测

以人为中心的 3D 场景理解最近因其对机器人的关键影响而引起越来越多的关注。然而,以人为中心的现实生活场景极其多样和复杂,人类有着复杂的动作和互动。由于标记数据有限,监督方法很难推广到阻碍实际应用的一般场景。模仿人类智能,我们提出了一种无监督的 3D 检测方法,用于以人为中心的场景,通过将知识从合成的人类实例转移到真实场景。

用于半监督单目3D目标检测的解耦伪标记

我们深入研究了半监督单目 3D 对象检测(SSM3OD)的伪标记,并发现了两个主要问题:3D 和 2D 属性的预测质量之间的偏差,以及伪标记产生的深度监督的噪声趋势,导致与其他可靠监督形式的显着优化冲突。为了解决这些问题,我们为 SSM3OD 引入了一种新的解耦伪标记(DPL)方法。

使用单视图图像的弱监督单目 3D 检测

单目 3D 检测(M3D)的目的是从单视图像中精确定位 3D 目标,这通常需要对3D 检测盒进行费力的标注。弱监督 M3D 最近被研究通过利用现有的许多 2D 标注来避免 3D 标注过程,但它通常需要额外的训练数据,如 LiDAR 点云或多视角图像,这大大降低了其在各种应用中的适用性和可用性。我们提出了 SKD-WM3D,这是一个弱监督的单目 3D 检测框架,它利用深度信息来实现只包含单视图像的M3D,而不需要任何 3D 注释或其他训练数据。

RCBEVDet:鸟瞰视图中雷达相机融合用于 3D 物体检测

3D目标检测是自动驾驶的关键任务之一。为了在实际应用中降低成本,人们提出了用低成本的多视角摄像机来代替扩展的 LiDAR 传感器。然而,仅仅依靠摄像机很难实现高精度、高鲁棒性的三维目标检测。解决这一问题的一个有效方案是将多视角摄像机与经济型毫米波雷达传感器相结合,实现更可靠的多模式 3D 目标检测。本文介绍了一种雷达与摄像机融合的鸟瞰三维目标检测方法 RCBEVDet。

A-Teacher:用于 3D 半监督对象检测的非对称网络

提出了第一个在线非对称半监督框架 A-Teacher,用于基于 LiDAR 的 3D 目标检测。我们的动机源于这样的观察:1)现有的对称师生方法具有简单的特点,但由于需要相同的模型结构和输入数据格式,阻碍了教师和学生之间的蒸馏性能。2)不同构造复杂教师模型的离线非对称方法可以生成更精确的伪标签,但对教师和学生模型的联合优化具有挑战性。因此,在本文中,我们设计了一条不同于传统范式的路径,它可以利用一名强大的教师的能力,同时保留在线教师模型更新的优势。

CVPR 2024论文合集PDF版

下面的资料中收录并翻译了CVPR 2024所有论文的题目与摘要,它为您扫清了语言障碍,让您能够充分地利用碎片时间、随时随地跟踪计算机视觉与模式识别领域最前沿的研究。这本资料不仅是学习的宝典,更是灵感的源泉。
CVPR 2024 收录所有论文题目和题目的合集:https://mbd.pub/o/bread/ZpeYmplt
CVPR 2024 收录所有论文题目的合集:https://mbd.pub/o/bread/ZpeYmphy

小样本目标检测

基于基础模型的小样本目标检测.

小样本目标检测(FSOD)旨在检测只有几个训练例子的目标。视觉特征提取和查询支持相似性学习是两个关键组成部分。现有的工作通常是基于 ImageNet 预训练的视觉骨干进行开发的,并为小样本学习设计复杂的度量学习网络,但精度仍然较差。在这项工作中,我们研究了使用现代基础模型的小样本目标检测。

分布外检测

测试时间线性分布外检测

分布外(OOD)检测旨在通过在输入样本显著偏离训练分布(分布中)时触发警报来解决神经网络的过度置信度预测,这表明输出可能不可靠。

CORES:基于卷积响应的分布外检测分数

深度神经网络(DNN)在遇到分布外(OOD)样本时往往表现出过度自信,这在现实世界的应用中带来了重大挑战。

房间里的一只吵闹的大象:您的分布外检测器对标记噪音是否稳健?

检测不熟悉或意外图像的能力对于计算机视觉系统的安全部署至关重要。在分类的背景下,检测模型训练域之外的图像的任务称为分布外(OOD)检测。虽然人们对开发后自组织 OOD 检测方法的研究兴趣越来越大,但对于这些方法在底层分类器没有在干净、精心挑选的数据集上进行训练时如何执行的讨论相对较少。在这项工作中,我们在(更现实的)场景中更仔细地研究了 20 种最先进的 OOD 检测方法,其中用于训练底层分类器的标签是不可靠的(例如,众包标签或网络抓取的标签)。

用于小样本分布外检测的类似 ID 的提示学习

分布外(OOD)检测方法通常利用辅助离群点来训练识别 OOD 样本的模型,特别是从辅助离群点数据集中发现具有挑战性的离群点来改进 OOD 检测。然而,在有效区分与分布内(ID)数据非常相似的最具挑战性的 OOD 样本(即类似 ID 的样本)方面,它们可能仍然面临限制。为此,我们提出了一种新颖的 OOD 检测框架,该框架利用 ID 样本的邻近空间中的 CLIP 来发现类似 ID 的离群点,从而帮助识别这
些最具挑战性的 OOD 样本。

YolOOD:利用目标检测概念进行多标签分发外检测

由于分布外(OOD)检测在已部署系统中的重要性,近年来引起了机器学习研究界的广泛关注。以往的研究大多集中在多类分类任务中 OOD 样本的检测。然而,在多标签分类任务中的 OOD 检测,一个更常见的真实世界用例,仍然是一个未被探索的领域。在本研究中,我们提出了一种利用目标检测领域的概念来进行多标签分类任务中的 OOD 检测的方法 YolOOD。

开放世界/词汇检测

用于开放式词汇目标检测的内置检测器中区域词对齐的探索

开放式词汇目标检测旨在检测独立于训练过程中使用的基本类别的新类别。大多数现代方法都坚持从大规模多模态语料库中学习视觉语言空间,然后将所获得的知识转移到现成的检测器,如 Faster RCNN。然而,在知识转移过程中,由于领域差距阻碍了对新类别的泛化能力,信息可能会衰减或破坏。为了缓解这一困境,我们在本文中提出了一个新的框架,名为 BIND,代表 Bulit in 检测器,以消除对模块更换或知识转移到现成检测器的需求。

SHiNee:开放词汇对象检测的语义层次结构 Nexus

开放词汇表对象检测(OVOD)将检测转变为一种语言制导的任务,允许用户在推理过程中自由定义他们感兴趣的类词汇。然而,我们的初步调查表明,现有的Ovod 检测器在处理跨不同语义粒度的词汇表时表现出显着的可变性,这给现实世界的部署带来了担忧。为此,我们引入了语义层次 Nexus(SISH),这是一种使用来自类层次的语义知识的新型分类器。

生成增强的负值以训练基于数据的目标检测器

用辨别性目标函数训练这种模型已被证明是成功的,但需要良好的正样本和负样本。然而,自由形式的性质和对象描述的开放词汇使得否定的空间非常大。以前的工作是随机抽样底片或使用基于规则的技术来构建底片。相反,我们建议利用现代生成模型中内置的大量知识来自动构建与原始数据更相关的负片。

DetCLIPv3:迈向多功能生成开放词汇对象检测

现有的开放词汇表对象检测器通常需要用户提供一组预定义的类别,这大大限制了他们的应用场景。在本文中,我们介绍了一种高性能的检测器,它不仅擅长于开放词汇表的对象检测,而且还擅长为被检测的对象生成分层标签。

抓取检测

通过领域先验知识推广 6-DoF 抓取检测

本文重点研究了 6-DOF 抓取检测方法的泛化能力。虽然基于学习的抓取检测方法可以利用从训练集学习的抓取分布来预测不可见对象的抓取姿势,但当遇到形状和结构不同的对象时,它们的性能往往会显着下降。为了增强抓取检测方法的泛化能力,我们融合了机器人抓取的领域先验知识,使其能够更好地适应形状和结构差异较大的对象。

语言驱动的抓取检测

抓握检测是各种工业应用中一个持久而复杂的挑战。最近,已经提出了许多方法和数据集来解决抓取检测问题。然而,他们中的大多数人并不认为使用自然语言作为检测抓握姿势的条件。在本文中,我们介绍了一个新的语言驱动的抓取检测数据集“抓取任何东西++”,该数据集具有 3M 个对象上的 1M 个样本和超过 10M 的抓取指令。我们利用基础模型创建了一个具有相应图像和抓取提示的大规模场景语料库。我们将语言驱动的抓取检测任务视为一个条件生成问题。借鉴扩散模型在生成任务中的成功,并考虑到语言在这项任务中起着至关重要的作用,我们提出了一种新的基于扩散模型的语言驱动的抓取检测方法。

雷达目标检测

RadSimReal:通过模拟弥补雷达目标检测中合成数据和真实数据之间的差距

利用神经网络对雷达图像中的目标进行检测,在提高自主驾驶方面显示出巨大的潜力。然而,从真实雷达图像中获取对训练这些网络至关重要的注释数据集是具有挑战性的,特别是在雷达性能优越的远程探测和不利天气和照明条件的情况下。为了应对这一挑战,我们提出了 RadSimReal,这是一种创新的物理雷达模拟,能够生成合成雷达图像,并附带各种雷达类型和环境条件的注释,所有这些都不需要实际的数据收集。

其他

CAT:利用类间动力学进行域自适应目标检测

域自适应目标检测旨在使检测模型适应注释数据不可用的域。

CrossKD:用于目标检测的十字头知识提取

知识提取(KD)已被证明是一种有效的学习紧凑目标检测器的模型压缩技术。现有的最先进的目标检测 KD 方法大多基于特征模仿。在本文中,我们提出了一种通用而有效的预测模拟蒸馏方案,称为 CrossKD。

SDDGR:用于类增量目标检测的基于稳定扩散的深度生成重放

在类增量学习(CIL)领域,随着生成模型的不断改进,生成重放作为一种减轻灾难性遗忘的方法变得越来越突出。

面向可扩展的三维异常检测和定位:基于三维异常合成的基准和自监督学习网络

近年来,三维异常检测这一涉及细粒度几何判别的关键问题越来越受到关注。然而,缺乏丰富的真实三维异常数据限制了当前模型的可扩展性。

Endow SAM with Keen Eyes:用于视频伪装目标检测的时空提示学习

分割一切模型(SAM)是一种即时驱动的基础模型,在自然图像分割中表现出了显著的性能。然而,它在视频伪装对象检测(VCOD)中的应用遇到了挑战,主要源于被忽视的时间-空间关联以及用户提供的难以用肉眼辨别的伪装对象提示
的不可靠性。为了解决上述问题,我们赋予 SAM 敏锐的洞察力,并提出了时空提示 SAM(TSP-SAM),这是一种通过巧妙的提示学习方案为 VCOD 量身定制的新方法。

双曲线异常检测

异常检测是工业场景中一项具有挑战性的计算机视觉任务。深度学习的进步不断革新基于视觉的异常检测方法,在监督和自监督异常检测方面都取得了长足的进展。常用的流水线是通过使用基于距离的损失函数约束特征嵌入来优化模型。然而,这些方法在欧氏空间中有效,并且不能很好地利用非欧氏空间中的数据。在本文中,我们首次探索了非欧氏空间的代表双曲空间中的异常检测任务,并提出了一种双曲
异常检测( HypAD)方法。

CLIP BEVFormer:利用Ground Truth流增强基于多视图图像的 BEV 检测器

自动驾驶是计算机视觉中塑造交通未来的一个关键领域。在这种范式中,系统的主干在解释复杂环境方面发挥着至关重要的作用。然而,一个值得注意的挑战是,在鸟瞰图元素方面缺乏明确的监督。为了解决这一限制,我们引入了 CLIP BEV,这是一种利用对比学习技术的力量来增强具有真实信息流的多视图图像衍生 BEV主干的新方法。

基于多粒度时空表示学习的多尺度视频异常检测

视频异常检测的最新进展表明,外观和运动特征在区分异常模式和正常模式方面起着至关重要的作用。然而,我们注意到,异常的空间尺度的影响被忽略了。许多异常事件发生在有限的局部区域和严重的背景噪声干扰了异常变化的学习。同时,大多数现有的方法都受到粗粒度建模方法的限制,这些方法不足以学习高度判别特征来区分小规模异常和正常模式之间的细微差异。为此,本文通过多粒度时空表示学习来解决多尺度视频异常检测问题。

弱监督视频异常检测的规范性引导文本提示

弱监督视频异常检测(WSVAD)是一项具有挑战性的任务。基于弱标签生成细粒度伪标签,然后对分类器进行自训练是目前一种很有前途的解决方案。然而,由于现有方法仅使用 RGB 视觉模态,并且忽略了类别文本信息的利用,从而限制了更准确的伪标签的生成,并影响了自训练的性能。受本文基于事件描述的手动标记过程的启发,我们提出了一种新的基于文本提示和规范性引导的 WSVAD 伪标记生成和自训练框架。我们的想法是转移对比语言图像预训练(CLIP)模型的丰富的语言视觉知识,用于对齐视频事件描述文本和相应的视频帧,以生成伪标签。

用于开放世界检测的具有合成字幕的双曲线学习

开放世界检测带来了重大挑战,因为它需要使用目标类别标签或自由格式文本来检测任何对象。现有的相关工作通常使用大规模的手动注释字幕数据集进行训练,这些数据集的收集成本极高。相反,我们建议从视觉语言模型(VLM)中转移知识,以自动丰富开放词汇描述。

复杂工业图像的监督异常检测

工业生产线上的自动化目视检查对于提高各个行业的产品质量至关重要。异常检测(AD)方法是实现这一目的的强大工具。然而,现有的公共数据集主要由没有异常的图像组成,这限制了 AD 方法在生产环境中的实际应用。为了应对这一挑战,我们提出了Valeo 异常数据集(VAD),这是一个新颖的真实世界工业数据集,包括 5000 张图像,包括 20 多个子类中 2000 个具有挑战性的真实缺陷实例。

改进激光雷达视觉基础模型提取的三大支柱

自监督图像主干可以用于非常有效地处理复杂的 2D 任务(例如语义分割对象发现),并且很少或没有下游监督。理想情况下,激光雷达的 3D 主干应该能够在提取这些强大的 2D 特征后继承这些特性。基于自动驾驶数据的图像到激光雷达的
最新提取方法显示出了良好的结果,这要归功于不断改进的提取方法。然而,当通过线性探测来测量提取特征与完全监督特征的质量时,我们仍然注意到巨大的性能差距。

用于多标签时间动作检测的双 DETR

时间动作检测(TAD)旨在识别未修剪视频中的动作边界和相应的类别。受DETR 在对象检测中的成功启发,几种方法将基于查询的框架应用于 TAD 任务。然而,这些方法主要遵循 DETR 来预测实例级别的动作(即通过其中心点来识别每个动作),从而导致次优边界定位。为了解决这个问题,我们提出了一种新的基于双层查询的 TAD 框架,即 DualDETR,用于从实例级和边界级检测动作。

时间动作检测模型对抗时间腐蚀的鲁棒性基准测试

时间动作检测(TAD)旨在定位长期未修剪视频中的动作位置和识别动作类别。尽管许多方法已经取得了有希望的结果,但它们的鲁棒性还没有得到彻底的研究。在实践中,我们观察到视频中的时间信息偶尔会被破坏,例如帧丢失或模糊。有趣的是,即使只有一帧受到影响,现有的方法也经常会导致性能显著下降。为了正式评估鲁棒性,我们建立了两个时间损坏鲁棒性基准,即 THUMOS14-C 和 ActivityNet-v1.3-C。在本文中,我们广泛分析了七种领先的 TAD 方法的鲁棒性,并获得了一些有趣的发现。

学习分布外检测的可转移负提示

现有的即时学习方法在分布外(OOD)检测中显示出一定的能力,但在其训练中目标数据集中缺乏 OOD 图像可能导致 OOD 图像和分布内(ID)类别之间的不匹配,从而导致高的假阳性率。为了解决这个问题,我们引入了一种新的 OOD检测方法,称为“NegPrompt”,以学习一组负提示,每个负提示表示给定类标签的负内涵,用于划定 ID 和 OOD 图像之间的边界。

在不断变化的测试领域中,对象检测器应该如何以及何时更新?

众所周知,当深度学习模型在测试时遇到分布变化时,其性能会恶化。已经提出了测试时间自适应(TTA)算法来在线调整模型,同时推断测试数据。然而,现有的研究主要集中在通过优化批处理规范化层或分类头的分类任务上,但这种方法限制了其对各种模型架构(如 Transformers)的适用性,并使其难以应用于其他任务(如对象检测)。在本文中,我们提出了一种新的在线自适应方法,用于在不断变化的测试域中进行对象检测,考虑到要更新模型的哪一部分、如何更新以及何时执行更新。

CosalPure:从组图像中学习概念用于鲁棒共显著性检测

共同显著对象检测(CoSOD)旨在识别给定图像组中的共同和显著(通常在前景中)区域。尽管取得了重大进展,但最先进的 CoSOD 很容易受到一些对抗性扰动的影响,导致精度大幅下降。对抗性扰动可以误导 CoSOD,但不会改变共同显著对象的高级语义信息(例如概念)。在本文中,我们提出了一种新的鲁棒性增强框架,首先基于输入组图学习共同显著对象的概念,然后利用这一概念来纯化对抗性扰动,这些扰动随后被馈送到 CoSOD 以进行鲁棒性增强。

GLOW:针对目标检测的全局布局感知攻击

敌意攻击的目的是扰乱图像,使预测器输出错误的结果。由于结构化攻击的研究有限,对自然多目标场景进行一致性检查是对抗传统对手攻击的一种实用方法。更多想要的攻击应该能够通过这样的一致性检查来愚弄防御。因此,我们提出了第一种方法 GLOW,它通过生成全局布局感知的对抗性攻击来应对各种攻击请求,其中明确地建立了分类布局约束和几何布局约束。

FakeInVersion:学习通过倒置稳定扩散从看不见的文本到图像模型中检测图像

由于 GenAI 系统被滥用的可能性很高,检测合成图像的任务最近引起了研究界的极大兴趣。不幸的是,随着新的高保真文本到图像模型以令人眼花缭乱的速度发展,现有的图像空间探测器很快就被淘汰了。在这项工作中,我们提出了一种新的合成图像检测器,它使用了通过对开源的预先训练的稳定扩散模型进行倒置而获得的特征。

在 Deepfake 检测中保持公平性概括

尽管近年来开发了有效的 Deepfake 检测模型,但最近的研究表明,这些模型会导致种族和性别等人口群体之间不公平的表现差异。这可能导致特定群体面临不公平的目标或被排除在检测之外,可能允许错误分类的深度假货操纵公众舆论,破坏对该模型的信任。解决这一问题的现有方法是提供公平损失函数。该算法对域内评估具有较好的公平性,但对跨域测试不能保持公平性。这凸显了公平泛化在打击深度
假货中的重要意义。在这项工作中,我们提出了一种方法,通过同时考虑特征损失和优化方面来解决 Deepfake 检测中的公平性泛化问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/35795.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

生信技能50 - 本地构建Clinvar数据库VCF变异位点快速搜索功能

1. Clinvar数据库文件下载 参考本人文章: 生信技能40 - Clinvar数据库VCF文件下载和关键信息提取 # 下载GRCh37 vcf wget -c -b https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/clinvar_20240624.vcf.gz wget https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh37/…

森林草原火险因子综合监测系统解决方案

一、概述 根据应急管理部和国家统计局发布的数据,2023 年全国共接报火灾 74.5 万起,其中森林火灾 328 起,共发生草原火灾 15 起。为应对这一严峻挑战我国正面临着森林草原火险的严重威胁。森林火灾不仅对生态文明建设构成严重威胁&#xff0c…

顶顶通呼叫中心中间件-透传uuid并且导入对端变量到本端(mod_cti基于Freeswitch)

一、配置拨号方案 win-ccadmin配置方法 点击拨号方案 -> 点击进入排队 -> 根据图中配置。如果不是排队转人工是机器人转人工那么就是在机器人那个拨号方案配置,并且需要配置在"cti_robot"之前即可 action"set" data"sip_h_X_tas…

第2章.现场设备的物联网模式--设备网关

第2章.现场设备的物联网模式 本章列出了与现场设备或事物相关的关键模式。阅读本章后,您将能够识别物联网架构中这些模式的存在。它提供了有关模式适合或适用的场景的详细信息,以及需要考虑的约束。这将帮助您相对轻松地理解现有的物联网架构。 本章涵盖…

富格林:汲取可信经验击败暗箱

富格林指出,暗箱的主要攻击对象仍然是没有可信经验加持的新手投资者,一些不正规平台或个人会采用暗箱套路来欺诈圈套投资者。虽然损失的套路是不断更新,但万变不离其中,我们汲取可信的经验可以在日后的投资中避免损失。以下是富格…

【论文阅读】Answering Label-Constrained Reachability Queries via Reduction Techniques

Cai Y, Zheng W. Answering Label-Constrained Reachability Queries via Reduction Techniques[C]//International Conference on Database Systems for Advanced Applications. Cham: Springer Nature Switzerland, 2023: 114-131. Abstract 许多真实世界的图都包含边缘标签…

腾讯云TI平台的大模型精调解决方案

腾讯云TI平台的大模型精调解决方案 随着人工智能和大数据技术的快速发展,大模型在各行各业的应用日益广泛。然而,大规模模型的训练和部署面临着诸多挑战,包括训练资源的高效利用、模型训练的稳定性和国产化适配需求。腾讯云TI平台凭借其强大…

从@Param注解开始,深入了解 MyBatis 参数映射的原理

系列文章目录 MyBatis缓存原理 Mybatis plugin 的使用及原理 MyBatisSpringboot 启动到SQL执行全流程 数据库操作不再困难,MyBatis动态Sql标签解析 Mybatis的CachingExecutor与二级缓存 使用MybatisPlus还是MyBaits ,开发者应该如何选择? 巧…

js异常处理方案

文章目录 异常处理方案同步代码的异常处理Promise 的异常处理async await 的异常处理 感谢阅读,觉得有帮助可以点点关注点点赞,谢谢! 异常处理方案 在JS开发中,处理异常包括两步:先抛出异常,然后捕获异常。…

AI在创造还是毁掉一些东西

今天突然闪现一个念头,AI真的能带来进步吧。AI能个我们带来什么? 突发这个想法的原因是早上乘车的时候看到一个7,8岁的小孩脖子上带了AI学习机。我在想,小孩都通过AI来学习了,还能提升创造吗?这引起了我的担忧。也许AI…

关于0xc000007b的一种解决方案

今天我在安装qview并运行时时,遇到了这个问题。 我在网上查找了许多解决方案,但它们大多都说是某些dll缺失或错误引起的。 这些说法应该是正确的,但我用了dll修复工具后,一点用都没有。 后来捣鼓半天后,我发现很可能…

C++ 文件传输和多人聊天室

两个主要的功能&#xff1a; 1.文件传输 2.多人聊天室 要用的技术点&#xff1a;epoll模型 出现的bug总结&#xff1a; 解决1个bug&#xff1a;每次客户端挂掉以后&#xff0c;就会报9:Bad file descriptormain. 解决办法&#xff1a;在if (len < 0)条件里面加入break就…

模拟实现string【C++】

文章目录 全部的实现代码放在了文章末尾准备工作包含头文件定义命名空间和类类的成员变量 构造函数默认构造拷贝构造 重载赋值拷贝函数析构函数迭代器和获取迭代器迭代器获取迭代器 resize【调整size】图解 reserve【调整capacity】empty【判断串是否为空】operator[]appendpus…

高中数学:复数-基础概念及运算法则

一、定义 规定 复数集与实数集之间的关系 二、复数的几何意义 第一种几何意义 第二种几何意义 复数向量的模 共轭复数 三、四则运算 加法 复向量加法 减法 两复数的距离 乘法 除法 四、总结 复数的所有运算法则和实数相同。 向量运算和实数向量运算相同。 怎么简便记忆了&a…

TTS 语音合成技术学习

TTS 语音合成技术 TTS&#xff08;Text-to-Speech&#xff0c;文字转语音&#xff09;技术是一种能够将文字内容转换为自然语音的技术。通过 TTS&#xff0c;机器可以“说话”&#xff0c;这大大增强了人与机器之间的互动能力。无论是在语音助手、导航系统还是电子书朗读器中&…

【iPaaS ESB】论企业在数据集成的抉择

随着信息化时代的到来&#xff0c;企业在发展过程中引入了众多且不协同的应用、系统和软件&#xff0c;每个系统都有着独立的信息&#xff0c;渐渐地出现数据信息不协同、数据集成异构的现象。因此企业对于数据的处理和分析需求也越来越多元及个性化。 在这样的背景下&#xf…

Java SE入门及基础(58) 并发 进程与线程概念

目录 并发 进程和线程 1. 进程和线程 2. 进程 3.线程 总结 并发 并发(Concurrency) Computer users take it for granted that their systems can do more than one thing at a time. They assume that they can continue to work in a word processor, while other app…

大模型火了一年半,AI还在「钻木取火」?

伴随着AI大模型的新一轮进化&#xff0c;这个夏天&#xff0c;人工智能正在引领一波新的热潮。 美国当地时间6月18日&#xff0c;AI大模型的主要显卡芯片供应商英伟达收涨3.51%&#xff0c;市值升至3.34万亿美元&#xff0c;一度超越微软和苹果等科技巨头&#xff0c;成为全球…

ElasticSearch中的BM25算法实现原理及应用分析

文章目录 一、引言二、BM25算法实现原理BM25算法的实现原理1. 词频&#xff08;TF&#xff09;&#xff1a;2. 逆文档频率&#xff08;IDF&#xff09;&#xff1a;3. 长度归一化&#xff1a;4. BM25评分公式&#xff1a; BM25算法示例 三、BM25算法在ElasticSearch中的应用分析…

在 Java 中的使用Selenium 测试框架

Selenium 测试框架&#xff1a;在 Java 中的使用 Selenium 测试框架就是这样一个强大的工具&#xff0c;它为 Web 应用的自动化测试提供了全面且高效的解决方案。 一、Selenium 简介 Selenium 是一个开源的自动化测试工具集&#xff0c;专门用于测试 Web 应用程序。它支持多…