[C++][设计模式]介绍

目录

  • 1.设计模式
    • 1.何为设计模式?
    • 2.深入理解面向对象
    • 3.软件设计的目标
    • 4.三大模式及其特点
    • 5.设计模式分类
  • 2.面向对象设计原则
    • 1.为什么要面向对象
    • 2.重新认识面向对象
    • 3.面向对象设计原则
    • 4.C++对象模型
  • 3.重构
    • 1. 重构获得模式(Refactoring to Patterns)
    • 2.重构关键技法
  • 4.代码感受
    • 1.代码一
      • 1.shape.h
      • 2.MainForm.cpp
    • 2.代码二
      • 1.shape.h
      • 2.MainForm.cpp
  • 5.总结
    • 1.什么时候不用模式?
    • 2.经验之谈


1.设计模式

1.何为设计模式?

  • 每一个模式描述了一个在我们周围不断重复发生的问题, 以及该问题的解决方案的核心
  • 这样,你就能一次又一次地使用该方案而不必做重复劳动

2.深入理解面向对象

  • 向下:面向对象三大机制
    • 封装:隐藏内部实现
    • 继承:复用现有代码
    • 多态:改写对象行为
  • 向上:深刻把握面向对象机制所带来的抽象意义,理解如何使用这些机制来表达世界

3.软件设计的目标

  • 复用

4.三大模式及其特点

  • 创建型模式:抽象了实例化过程,它们帮助一个系统独立于如何创建、组合和表示它的那些对象
  • 结构型模式涉及到如何组合类和对象以获得更大的结构。创建型模式关注一个类或对象的实例化;结构型模式关注多个类或对象组合成更复杂的对象,是为了更灵活的构造对象
  • 行为模式涉及到算法和对象间职责的分配,不仅描述对象和类的模式,还描述它们之间的通信模式。使用继承机制在类间分派行为

5.设计模式分类

  • 组件协作:现代软件专业分工之后的第一个结果是“框架与应用程序的划分”,“组件协作”模式通过晚期绑定,来实现框架与应用程序之间的松耦合,是二者之间协作时常用的模式
    • Template Method
    • Strategy
    • Observer / Event
  • 单一职责: 在软件组件的设计中,如果责任划分的不清晰,使用继承得到的结果往往是随着需求的变化,子类急剧膨胀,同时充斥着重复代码, 这时候的关键是划清责任
    • Decorator
    • Bridge
  • 对象创建:绕开“new”来避免对象创建(new)过程中所导致的紧耦合(编译时依赖具体实现类),从而支持对象创建的稳定。它是接口抽象之后的第一步工作
    • Factory Method
    • Abstract Factory
    • Prototype
    • Builder
  • 对象性能:面向对象很好地解决了“抽象”的问题,但是不可避免地要付出一定的代价。对于通常情况来讲,面向对象的成本大都可以忽略不计。但是某些情况,面向对象所带来的成本必须谨慎处理
    • Singleton
    • FlyWeight
  • 接口隔离:在组件构建过程中,某些接口之间直接的依赖常常会带来很多问题、甚至根本无法实现。采用添加一层间接(稳定)(微观上比如指针,宏观上比如操作系统、虚拟机、依赖倒置原则)接口,来隔离本来互相紧密关联的接口是一种常见的解决方案
    • Facade
    • Proxy
    • Mediator
    • Adapter
  • 状态变化:在组件构建过程中,某些对象的状态经常会变化,如何对这些变化进行有效地管理?同时又维持高层模块的稳定?
    • Memento
    • State
  • 数据结构:一些组件在内部具有特定的数据结构,如果让客户程序依赖这些特定的数据结构,将极大地破坏组件的复用。将这些特定数据结构封装在内部,在外部提供统一的接口,来实现与特定结构无关的访问,是一种行之有效的解决方案
    • Composite
    • Iterator
    • Chain of Responsity
  • 行为变化:在组件的构建过程中,组件行为的变化经常导致组件本身剧烈的变化。“行为变化”模式将组件的行为和组件本身进行解耦,从而支持组件行为的变化,实现两者之间的松耦合
    • Command
    • Visitor
  • 领域问题:在特定领域中,某些变化虽然频繁,但可以抽象为某种规则。这时候,结合特定领域,将问题抽象为语法规则,从而给出在该领域下的一般性解决方案
    • Interpreter
  • 现代较少用的模式
    • Builder
    • Mediator
    • Memento
    • Iterator
    • Chain of Resposibility
    • Command
    • Visitor
    • Interpreter

2.面向对象设计原则

1.为什么要面向对象

  • 变化是复用的天敌
  • 面向对象设计最大的优势:抵御变化

2.重新认识面向对象

  • 理解隔离变化
    • 从宏观层面来看,面向对象的构建方式更能适应软件的变化, 能将变化所带来的影响减为最小
  • 各司其职
    • 从微观层面来看,面向对象的方式更强调各个类的“责任”
    • 由于需求变化导致的新增类型不应该影响原来类型的实现 —— 是所谓各负其责
  • 对象是什么?
    • 语言实现层面来看,对象封装了代码和数据
    • 规格层面讲,对象是一系列可被使用的公共接口
    • 概念层面讲,对象是某种拥有责任的抽象

3.面向对象设计原则

  • 依赖倒置原则(DIP)
    • 高层模块(稳定)不应该依赖于低层模块(变化),二者都应该依赖于抽象(稳定)

    • 抽象(稳定)不应该依赖于实现细节(变化) ,实现细节应该依赖于抽象(稳定)
      请添加图片描述

    • 面向接口编程,依赖于抽象而不依赖于具体

      • 写代码时用到具体类时,不与具体类交互,而是与具体类的上层接口交互
  • 开放封闭原则(OCP)
    • 对扩展开放,对更改封闭
    • 类模块应该是可扩展的,但是不可修改
      • 在程序需要进行拓展的时候不能去修改原有的代码,而是拓展原有代码,实现热插拔的效果
  • 单一职责原则(SRP)
    • 一个类应该仅有一个引起它变化的原因
      • 也就是说每个类应该实现单一的职责
      • 如若不然,就应该把类拆分
    • 变化的方向隐含着类的责任
  • 替换原则(LSP)
    • 子类必须能够替换它们的基类(IS-A) --> 面向对象设计的基本原则之一
      • 任何基类可以出现的地方,子类一定可以出现
      • 它是继承复用的基石,只有当衍生类可以替换掉基类,软件单位功能不受到影响的时候,基类才能真正被复用,而衍生类也能够在基类的基础上增加新的行为
    • 继承表达类型抽象,是对“开闭原则”的补充
      • 实现开闭原则的关键步骤就是抽象化,而基类与子类的继承关系就是抽象化的具体实现,所以替换原则是对实现抽象化的具体步骤的规范
  • 接口隔离原则(ISP)
    • 不应该强迫客户程序依赖它们不用的方法
    • 接口应该小而完备
    • 每个接口中不存在子类用不到却必须实现的方法,如果不然,就要将接口拆分
      • 使用多个隔离的接口,比使用单个接口要好
  • 优先使用对象组合,而不是类继承
    • 类继承通常为“白箱复用”,对象组合通常为“黑箱复用”
    • 继承在某种程度上破坏了封装性,子类父类耦合度高
    • 而对象组合则只要求被组合的对象具有良好定义的接口,耦合度低
  • 封装变化点
    • 使用封装来创建对象之间的分界层,让设计者可以在分界层的一侧进行修改,而不会对另一侧产生不良的影响,从而实现层次间的松耦合
  • 针对接口编程,而不是针对实现编程
    • 不将变量类型声明为某个特定的具体类,而是声明为某个接口
    • 客户程序无需获知对象的具体类型,只需要知道对象所具有的接口
    • 减少系统中各部分的依赖关系,从而实现“高内聚、松耦合”的类型设计方案

4.C++对象模型

  • 一般都会用第三个对象模型,第三种是比较松的耦合,具有高灵活性
    请添加图片描述

3.重构

1. 重构获得模式(Refactoring to Patterns)

  • 面向对象设计模式是“好的面向对象设计”,所谓“好的面向对象设计”指是那些可以满足 “应对变化,提高复用”的设计
  • 现代软件设计的特征是“需求的频繁变化
    • 设计模式的要点是 “寻找变化点,然后在变化点处应用设计模式,从而来更好地应对需求的变化”
    • “什么时候、什么地点应用设计模式”比“理解设计模式结构本身”更为重要
  • 设计模式的应用不宜先入为主,一上来就使用设计模式是对设计模式的最大误用
    • 没有一步到位的设计模式
    • 敏捷软件开发实践提倡的“Refactoring to Patterns”是目前普遍公认的最好的使用设计模式的方法

2.重构关键技法

  • 静态 --> 动态
  • 早绑定 --> 晚绑定
  • 继承 --> 组合
  • 编译时依赖 --> 运行时依赖
  • 紧耦合 --> 松耦合

4.代码感受

1.代码一

1.shape.h

class Point
{
public:int x;int y;
};class Line
{
public:Point start;Point end;Line(const Point& start, const Point& end){this->start = start;this->end = end;}
};class Rect
{
public:Point leftUp;int width;int height;Rect(const Point& leftUp, int width, int height){this->leftUp = leftUp;this->width = width;this->height = height;}};

2.MainForm.cpp

class MainForm : public Form 
{
private:Point p1;Point p2;vector<Line> lineVector;vector<Rect> rectVector;
public:MainForm(){//...}
protected:virtual void OnMouseDown(const MouseEventArgs& e);virtual void OnMouseUp(const MouseEventArgs& e);virtual void OnPaint(const PaintEventArgs& e);
};void MainForm::OnMouseDown(const MouseEventArgs& e)
{p1.x = e.X;p1.y = e.Y;//...Form::OnMouseDown(e);
}void MainForm::OnMouseUp(const MouseEventArgs& e)
{p2.x = e.X;p2.y = e.Y;if (rdoLine.Checked){Line line(p1, p2);lineVector.push_back(line);}else if (rdoRect.Checked){int width = abs(p2.x - p1.x);int height = abs(p2.y - p1.y);Rect rect(p1, width, height);rectVector.push_back(rect);}//...this->Refresh();Form::OnMouseUp(e);
}void MainForm::OnPaint(const PaintEventArgs& e)
{//针对直线for (int i = 0; i < lineVector.size(); i++){e.Graphics.DrawLine(Pens.Red,lineVector[i].start.x, lineVector[i].start.y,lineVector[i].end.x,lineVector[i].end.y);}//针对矩形for (int i = 0; i < rectVector.size(); i++){e.Graphics.DrawRectangle(Pens.Red,rectVector[i].leftUp,rectVector[i].width,rectVector[i].height);}//...Form::OnPaint(e);
}

2.代码二

1.shape.h

class Shape
{
public:virtual void Draw(const Graphics& g) = 0;virtual ~Shape() { }
};class Point
{
public:int x;int y;
};class Line: public Shape
{
public:Point start;Point end;Line(const Point& start, const Point& end){this->start = start;this->end = end;}//实现自己的Draw,负责画自己virtual void Draw(const Graphics& g){g.DrawLine(Pens.Red, start.x, start.y,end.x, end.y);}};class Rect: public Shape
{
public:Point leftUp;int width;int height;Rect(const Point& leftUp, int width, int height){this->leftUp = leftUp;this->width = width;this->height = height;}//实现自己的Draw,负责画自己virtual void Draw(const Graphics& g){g.DrawRectangle(Pens.Red,leftUp,width,height);}};

2.MainForm.cpp

class MainForm : public Form 
{
private:Point p1;Point p2;//针对所有形状vector<Shape*> shapeVector;public:MainForm(){//...}
protected:virtual void OnMouseDown(const MouseEventArgs& e);virtual void OnMouseUp(const MouseEventArgs& e);virtual void OnPaint(const PaintEventArgs& e);
};void MainForm::OnMouseDown(const MouseEventArgs& e)
{p1.x = e.X;p1.y = e.Y;//...Form::OnMouseDown(e);
}void MainForm::OnMouseUp(const MouseEventArgs& e)
{p2.x = e.X;p2.y = e.Y;if (rdoLine.Checked){shapeVector.push_back(new Line(p1,p2));}else if (rdoRect.Checked){int width = abs(p2.x - p1.x);int height = abs(p2.y - p1.y);shapeVector.push_back(new Rect(p1, width, height));}//...this->Refresh();Form::OnMouseUp(e);
}void MainForm::OnPaint(const PaintEventArgs& e){//针对所有形状for (int i = 0; i < shapeVector.size(); i++){shapeVector[i]->Draw(e.Graphics); //多态调用,各负其责}//...Form::OnPaint(e);
}

5.总结

1.什么时候不用模式?

  • 代码可读性很差时
  • 需求理解还很浅时
  • 变化没有显现时
  • 不是系统的关键依赖点
  • 项目没有复用价值时
  • 项目将要发布时

2.经验之谈

  • 不要为模式而模式
  • 关注抽象类&接口
  • 理清变化点和稳定点
  • 审视依赖关系
  • 要有Framework和Application的区隔思维
  • 良好的设计时演化的结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/32591.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Oracle】实验二 体系结构、存储结构与各类参数

【实验目的】 理解Oracle体系结构了解初始化参数文件以及初始化参数的含义掌握查看三类数据字典视图和动态性能视图的方法 【实验内容】 如何查看初始化参数&#xff1f;有哪几种方法&#xff1f;初始化参数文件有几种&#xff1f;默认的保存位置在哪里&#xff1f;在SQL*Pl…

【开发】内网穿透ztncui搭建私有节点

文章目录 写在前面一键部署ztnuci记录后续 写在前面 前面搭建moon节点转发的确会降低延迟&#xff0c;但是总有出现moon节点解析不成功的例子&#xff0c;于是疯狂寻找答案是为什么&#xff1f;终于在知乎上找到这样一个答案。 一键部署ztnuci 参考这篇很完善的教程和贴心的…

AI味太重怎么办?1个超简单的方法就能解决

我们知道随着GPT技术的迅速发展&#xff0c;解决了我们大部分写作的难题。但是很多小伙伴想必都会遇到同样的问题&#xff0c;就是写出来的文章太正式-我们叫这“AI味”。 这AI味让人感觉内容虽然条理清楚&#xff0c;但就是缺了点人情味&#xff0c;读起来不够亲切。 其实&a…

基于YOLOv5的口罩佩戴检测系统的设计与实现(PyQT页面+YOLOv5模型+数据集)

简介 在各种工作环境和公共场所,确保人们正确佩戴口罩对个人防护和公共卫生至关重要,尤其是在医疗设施、制造业车间和拥挤的公共交通中。为了满足这一需求,我们开发了一种基于YOLOv5目标检测模型的口罩佩戴检测系统。本项目不仅实现了高精度的口罩佩戴检测,还设计了一个可…

【计算机网络仿真】b站湖科大教书匠思科Packet Tracer——实验6 生成树协议STP的功能

一、实验目的 1.验证以太网交换机生成树协议的功能&#xff1b; 2.理解网络环路对网络的负面效应&#xff1b; 3.理解生成树协议的作用。 二、实验要求 1.使用Cisco Packet Tracer仿真平台&#xff1b; 2.观看B站湖科大教书匠仿真实验视频&#xff0c;完成对应实验。 三、实…

图解注意力

图解注意力 Part #2: The Illustrated Self-Attention 在文章前面的部分&#xff0c;我们展示了这张图片来展示自注意力被应用于正在处理单词"it"的一层中&#xff1a; 在本节中&#xff0c;我们将看看这是如何完成的。请注意&#xff0c;我们将以一种试图理解单…

网卡故障但bond0不切换原因及处理、脚本监控bond0网卡状态并做相应操作

文章目录 故障说明监控脚本脚本编写脚本测试正常场景异常场景1异常场景2脚本准备和修改网卡名脚本拷贝到所有需要监控主机修改网卡名批量执行脚本故障说明 在一次交换机升级的割接中,主备交换机重启的时候,我们发现了一个问题,有几台宿主机会中断【ping不通】,交换机重启完…

Typora最新安装教程2024

Typora是一款广受好评的跨平台Markdown编辑软件&#xff0c;支持Windows、MacOS和Linux操作系统。它的设计旨在提供一个无干扰、高效且直观的写作环境。户快速管理和查找文档&#xff0c;支持直接在软件内浏览和操作文件结构。 Typora以其简洁而强大的功能集合&#xff0c;成为…

Java模拟马尔可夫链类问题的验证

马尔可夫链&#xff08;Markov Chain, MC&#xff09;是概率论和数理统计中具有马尔可夫性质&#xff08;Markov property&#xff09;且存在于离散的指数集&#xff08;index set&#xff09;和状态空间&#xff08;state space&#xff09;内的随机过程&#xff08;stochasti…

学习笔记——路由网络基础——路由的高级特性

七、路由的高级特性 1、路由迭代(路由递归) 路由必须有直连的下一跳才能够指导转发&#xff0c;静态路由或BGP路由的下一跳可能不是直连的邻居&#xff0c;因此需要计算出一个直连的下一跳和对应的出接口&#xff0c;这个过程就叫做路由迭代(路由递归)。 添加一条去往20.1.1.…

JAVA期末复习2

目录 一、Java基础知识 1. 下面几个标识符中&#xff0c;哪些是命名正确的 (A) 2. 分析以下代码&#xff0c;哪些是合法的 (C) 3. 以下代码的执行结果是&#xff08; B &#xff09; 4. 下面哪个不是java中的关键字&#xff1f;&#xff08; B &#xff09; 5. 下面对数组…

毕业设计——可视化实验仿真平台

该程序用于毕业设计&#xff0c;架构为前后端分离技术&#xff0c;涉及技术包括vue3&#xff0c;SpringBoot&#xff0c;spring-secrity&#xff0c;Redis&#xff0c;需要者进群769119544进行相关咨询。 程序分为三个角色&#xff1a;学生、老师、管理员。使用了spring-secrit…

字节豆包全新图像Tokenizer:生成图像最低只需32个token,最高提速410倍

ChatGPT狂飙160天&#xff0c;世界已经不是之前的样子。 更多资源欢迎关注 在生成式模型的迅速发展中&#xff0c;Image Tokenization 扮演着一个很重要的角色&#xff0c;例如Diffusion依赖的VAE或者是Transformer依赖的VQGAN。这些Tokenizers会将图像编码至一个更为紧凑的隐…

Redis 学习笔记(2)

目录 1 Redis的持久化1.1 RDB持久化方案1.2 AOF持久化方案 2 Redis架构2.1 主从复制架构2.2 哨兵集群设计2.3 哨兵集群设计 3 Redis事务机制4 Redis过期策略与内存淘汰机制4.1 过期策略4.2 内存淘汰机制 5 Redis高频面试题4.1 缓存穿透4.2 缓存击穿4.3 缓存雪崩 1 Redis的持久化…

C++STL 初阶(5)vector的简易实现(上)

不同于string只实现一个最简单的版本&#xff0c;vector在此处我们要实现的是模版类&#xff0c;类模版的声明和定义分离非常不方便&#xff08;会在链接时报错&#xff09;&#xff0c;所以我们都只在一个vector.h下去实现声明和定义。后续我们提及到的库里面实现的vector也是…

HCIP--OSPF(笔记3)

OSPF扩展配置 手工认证 【1】接口认证 -- 直连的邻居间&#xff0c;设定认证口令&#xff0c;进行身份核实&#xff0c;同时对双方交互的数据进行加密保护 [r9-GigabitEthernet0/0/1]ospf authentication-mode md5 1 cipher 123456 邻居间认证模式、编号、密码必须完全一致 【…

python实训day2

1、 from ming import * # 有点像C语言中的头文件 """在Python开发环境中&#xff0c;封装一个函数&#xff0c;功能目标为&#xff1a;通过两个整数参数一次性获取和、差、积、商四个值 """ def calc(a, b):return a b, a - b, a * b, a / b…

apollo规划架构

算法的基本架构 我们在最开始直接给出规划决策算法架构框图&#xff0c;然后一一介绍每个框图结构的细节&#xff1a; 模块的入口是 PlanningComponent&#xff0c;在 Cyber 中注册模块&#xff0c;订阅和发布消息&#xff0c;并且注册对应的 Planning 类。Planning 的过程之前…

网络技术原理需要解决的5个问题

解决世界上任意两台设备时如何通讯的&#xff1f;&#xff1f; 第一个问题&#xff0c;pc1和pc3是怎么通讯的&#xff1f; 这俩属于同一个网段&#xff0c;那么同网段的是怎么通讯的&#xff1f; pc1和pc2属于不同的网段&#xff0c;第二个问题&#xff0c;不同网段的设备是…

敏捷开发笔记(第7章节)--什么是敏捷设计

目录 1&#xff1a;PDF上传链接 7.1: 软件出了什么错 7.2: 设计的臭味--腐化软件的气味 7.2.1: 什么激化了软件的腐化 7.2.2: 敏捷团体不允许软件腐化 7.3: “copy”程序 1: 初始设计 2: 需求在变化 3: 得寸进尺 4: 期望变化 7.3.1: “copy”程序的敏捷设计 7.3.2:…