Studying-代码随想录训练营day17| 654.最大二叉树、617合并二叉树、700.二叉搜索树中的搜索、98.验证二叉树搜索树

第十七天,二叉树part05,进一步学习二叉树💪

654.最大二叉树

文档讲解:代码随想录最大二叉树

视频讲解:手撕最大二叉树

题目:

学习:本题与利用中序和后序序列构造二叉树有相同之处。依据题目要求,首先在数组里面找到最大值,作为根节点,然后划分左右区间对应根节点的左右子树。再分别在左右区间中找到最大值,作为根节点(中间节点),之后再次划分区间,进行下一轮循环。

代码:

//时间复杂度O(n^2)
//空间复杂度O(n^2)
class Solution {
public:TreeNode* constructMaximumBinaryTree(vector<int>& nums) {//终止条件if(nums.size() == 0) return nullptr;//单层递归逻辑//遍历数组中的最大值,作为根节点int index = 0; //保存下标for (int i = 0; i < nums.size(); i++) {if (nums[index] < nums[i]) index = i; //找到最大值下标}TreeNode* root = new TreeNode(nums[index]);//左区间vector<int> left(nums.begin(), nums.begin() + index);//右区间vector<int> right(nums.begin() + index + 1, nums.end());root->left = constructMaximumBinaryTree(left);root->right = constructMaximumBinaryTree(right);return root;}
};

本题还可以采用下标的方式划分区间,避免创建一个新的数组。 

代码:

//时间复杂度O(n^2)
//空间复杂度O(n)
class Solution {
private:// 在左闭右开区间[left, right),构造二叉树TreeNode* traversal(vector<int>& nums, int left, int right) {if (left >= right) return nullptr;// 分割点下标:maxValueIndexint maxValueIndex = left;for (int i = left + 1; i < right; ++i) {if (nums[i] > nums[maxValueIndex]) maxValueIndex = i;}TreeNode* root = new TreeNode(nums[maxValueIndex]);// 左闭右开:[left, maxValueIndex)root->left = traversal(nums, left, maxValueIndex);// 左闭右开:[maxValueIndex + 1, right)root->right = traversal(nums, maxValueIndex + 1, right);return root;}
public:TreeNode* constructMaximumBinaryTree(vector<int>& nums) {return traversal(nums, 0, nums.size());}
};

注意:本题的终止条件不唯一,也可以判断nums.size() == 1,即找到叶子节点的时候终止判断。采取这种方式,递归的时候要注意不要把空区间传入函数当中。


617合并二叉树

文档讲解:代码随想录合并二叉树

视频讲解:手撕合并二叉树

题目:

学习:

  1. 本题主要在于两点:1.两个树需要同步进行遍历;2.每一步遍历的时候,进行两棵树,相同节点之间的判断。
  2. 判断过程中会出现三种情况:1.root1存在该节点,root2不存在,则可以把root1该节点包括该节点以下的所有节点加入创建的树中(root2该节点没有,这个节点以下的节点肯定就也没有);2.root2存在该节点,root1不存在,则可以把root2该节点包括该节点以下的所有节点加入创建的树中;3.root1和root2都存在该节点,则把两棵树该节点的val值相加,将该节点加入到树中,并继续向下遍历。 

依据此,本题采用前序遍历最为合适,逻辑最清晰,当然采用别的遍历方式也都可以创建。

代码:

//时间复杂度O(min(m,n))
//空间复杂度O(min(m,n))
class Solution {
public:TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {//终止条件,当其中一颗树的节点为空时,返回另一棵树的所有节点,且不需要往下遍历了//注意两个树都为空的话,也是满足第一个判断条件,只不过返回的root2为空if (root1 == nullptr) return root2;if (root2 == nullptr) return root1;//确定单层递归条件,创建一个新的树TreeNode* root = new TreeNode(0);//前序遍历的方式,两个树同步进行遍历root->val = root1->val + root2->val;root->left = mergeTrees(root1->left, root2->left);root->right = mergeTrees(root1->right, root2->right);return root;}
};

代码:迭代法也能够进行求解,创建两个队列,同步进行遍历即可。

class Solution {
public:TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {if (t1 == NULL) return t2;if (t2 == NULL) return t1;queue<TreeNode*> que;que.push(t1);que.push(t2);while(!que.empty()) {TreeNode* node1 = que.front(); que.pop();TreeNode* node2 = que.front(); que.pop();// 此时两个节点一定不为空,val相加node1->val += node2->val;// 如果两棵树左节点都不为空,加入队列if (node1->left != NULL && node2->left != NULL) {que.push(node1->left);que.push(node2->left);}// 如果两棵树右节点都不为空,加入队列if (node1->right != NULL && node2->right != NULL) {que.push(node1->right);que.push(node2->right);}// 当t1的左节点 为空 t2左节点不为空,就赋值过去if (node1->left == NULL && node2->left != NULL) {node1->left = node2->left;}// 当t1的右节点 为空 t2右节点不为空,就赋值过去if (node1->right == NULL && node2->right != NULL) {node1->right = node2->right;}}return t1;}
};

700.二叉搜索树中的搜索 

文档讲解:代码随想录二叉搜索树中的搜索

视频讲解:手撕二叉搜索树中的搜索

题目: 

学习:二叉搜索树是二叉树中十分重要的一种类型,它的特点如下:

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉搜索树。

依据这个特点,二叉搜索树和普通搜索树的遍历方式是不同的,二叉搜索树本身就自带了遍历的顺序 ,依据值的大小选择遍历的路径。

代码:

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:TreeNode* searchBST(TreeNode* root, int val) {//终止条件if(root == nullptr) return nullptr;//确定单层递归逻辑if (root->val == val) return root;else if (root->val > val) {return searchBST(root->left, val);}else {return searchBST(root->right, val);}}
};

本题采取迭代法,可以更加的直观,因为本题不需要使用额外的数据结构,存储节点。

代码:

//时间复杂度O(n)
//空间复杂度O(1)
class Solution {
public:TreeNode* searchBST(TreeNode* root, int val) {while (root != NULL) {if (root->val > val) root = root->left;else if (root->val < val) root = root->right;else return root;}return NULL;}
};

98.验证二叉搜索树

文档讲解:代码随想录验证二叉搜索树

视频讲解:手撕验证二叉搜索树

题目: 

学习:本题可以利用到二叉搜索树一个重要的特性。由于二叉搜索树的特点,对二叉搜索树进行中序遍历,得到的数组是一个递增序列。

依据上序特点,我们可以通过中序遍历二叉树,把每个节点值加入到数组当中,最后判断数组是否是一个递增数组,如果是递增数组的话,则是一个二叉搜索树,否则就不是一个二叉搜索树。

代码:

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
private:vector<int> vec;void traversal(TreeNode* root) {if (root == NULL) return;traversal(root->left);vec.push_back(root->val); // 将二叉搜索树转换为有序数组traversal(root->right);}
public:bool isValidBST(TreeNode* root) {vec.clear(); // 不加这句在leetcode上也可以过,但最好加上traversal(root);for (int i = 1; i < vec.size(); i++) {// 注意要小于等于,搜索树里不能有相同元素if (vec[i] <= vec[i - 1]) return false;}return true;}
};

采取这种方法比较直观,但事实上我们在中序遍历的过程中,就可以进行前后两个节点之间值的大小判断了,只要遍历过程中,存在前节点的值小于后节点的值,则说明不是二叉搜索树,直到遍历完所有的节点。

代码:注意这里要初始化一个最小值,由于本题给出的最小值能够达到INT_MIN,所以我们要设置一个更小的值LONG_MIN。

class Solution {
public:long long compa = LONG_MIN; // 因为后台测试数据中有int最小值bool isValidBST(TreeNode* root) {if (root == nullptr) return true;bool left = isValidBST(root->left);//中序遍历,验证遍历的元素是不是从小到大if (compa >= root->val) return false;compa = root->val;bool right = isValidBST(root->right);return left && right;}
};

本题也可以采用双指针的方法,一个指向前节点,一个指向后节点,这样能够避免设置最小值,增加鲁棒性,应对更多的情况。

//时间复杂度O(n)
//空间复杂度O(n)
class Solution {
public:TreeNode* pre = NULL; // 用来记录前一个节点bool isValidBST(TreeNode* root) {if (root == NULL) return true;bool left = isValidBST(root->left);if (pre != NULL && pre->val >= root->val) return false;pre = root; // 记录前一个节点bool right = isValidBST(root->right);return left && right;}
};

总结

今天主要是对树的理解进一步加强,同时学习到如何运用一个二叉树中的重要类别二叉搜索树。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/31930.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第五篇:构建与维护私有Docker Registry: 企业级实践指南

构建与维护私有Docker Registry: 企业级实践指南 1. 引言&#xff1a;解析私有Docker仓库的必要性 1.1 Docker Registry简介与私有化的好处 Docker Registry是一个用于存储和分发Docker镜像的系统。在Docker生态系统中&#xff0c;Registry扮演着至关重要的角色&#xff0c;为…

洛谷:P5714 【深基3.例7】肥胖问题

1. 题目链接 https://www.luogu.com.cn/problem/P5714 P5714 【深基3.例7】肥胖问题 2. 题目描述 题目描述&#xff1a;BMI计算:m / (h * h)&#xff0c;m是体重(kg)&#xff0c;h是身高(m) 小于18.5&#xff1a;体重国轻&#xff0c;Underweight 小于等于18.5且小于24&#…

骨传导耳机值不值得入手?五款运动好物骨传导耳机推荐!

开放式耳机在如今社会中已经迅速成为大家购买耳机的新趋势&#xff0c;开放式蓝牙耳机作为骨传导耳机&#xff0c;深受喜欢听歌和热爱运动的人群欢迎。当大家谈到佩戴的稳固性时&#xff0c;后挂式骨传导耳机都会收到一致好评。对于热爱运动的人士而言&#xff0c;高品质的骨传…

A800显卡驱动安装(使用deb安装)

重新安装显卡驱动&#xff0c;查阅了资料将过程记录如下&#xff1a; 1.下载deb安装包 打开nvidia官网查找对应的驱动版本&#xff0c;A800所在的选项卡位置如图&#xff1a; 点击查找后下载得到的是nvidia-driver-local-repo-ubuntu2004-550.90.07_1.0-1_amd64.deb安装包 2.…

从零到一学FFmpeg:avcodec_open2 函数详析与实战

文章目录 前言一、函数原型二、功能描述三、使用实例 前言 avcodec_open2是FFmpeg库中的一个关键函数&#xff0c;用于根据给定的AVCodecContext和AVCodec实例初始化编解码器&#xff0c;使其准备好进行编解码操作。 这个函数是编解码流程中配置编解码器上下文后的重要一步&am…

不同点云聚类提取方法(模型、距离、密度)

目录 一、简介 二、点云聚类方法 1.基于距离的聚类方法 2.基于密度的聚类方法 3.基于模型的聚类方法 三、不同实现方式 1.平面模型 2.欧氏距离聚类 四、实现结果 一、简介 点云聚类方法是一种将点云数据进行分组的技术,在三维扫描、计算机视觉和机器人领域中,点云数据…

UDS服务——RequestDownload(0x34)

诊断协议那些事儿 诊断协议那些事儿专栏系列文章,本文介绍RequestDownload(0x34)—— 请求下载,用于给ECU下载数据的,最常见的应用就是在bootloader中,程序下载工具会发起请求下载,以完成ECU程序的升级。通过阅读本文,希望能对你有所帮助。 文章目录 诊断协议那些事儿…

【康复学习--LeetCode每日一题】2288. 价格减免

题目&#xff1a; 句子 是由若干个单词组成的字符串&#xff0c;单词之间用单个空格分隔&#xff0c;其中每个单词可以包含数字、小写字母、和美元符号 ‘$’ 。如果单词的形式为美元符号后跟着一个非负实数&#xff0c;那么这个单词就表示一个 价格 。 例如 “$100”、“$23”…

linux如何部署前端项目和安装nginx

要在Linux上部署前端项目并安装Nginx&#xff0c;你可以按照以下步骤操作&#xff1a; 安装Nginx: sudo apt update sudo apt install nginx 启动Nginx服务: sudo systemctl start nginx 确保Nginx服务开机自启: sudo systemctl enable nginx 部署前端项目&#xff0c;假设前…

萨科微slkor宋仕强论道华强北假货之六

萨科微slkor宋仕强论道华强北假货之六&#xff0c;华强北的假货这么多&#xff0c;搞得客户害怕、同行焦虑&#xff0c;话说“在华强北没有被坑过的&#xff0c;就不是华强北人”。我们金航标Kinghelm&#xff08;www.kinghelm.com.cn&#xff09;公司以前有一个贸易部&#xf…

45、基于深度学习的螃蟹性别分类(matlab)

1、基于深度学习的螃蟹性别分类原理及流程 基于深度学习的螃蟹性别分类原理是利用深度学习模型对螃蟹的图像进行训练和识别&#xff0c;从而实现对螃蟹性别的自动分类。整个流程可以分为数据准备、模型构建、模型训练和性别分类四个步骤。 数据准备&#xff1a; 首先需要收集包…

构造方法可以调用本类中重载的构造方法和它的父类的构造方法

1.调用本类中重载的构造方法&#xff1a;构造方法可以通过this()来调用本类中其他重载的构造方法。但是&#xff0c;这个调用必须位于构造方法的第一行&#xff0c;也就是说&#xff0c;它是构造方法中的第一个语句。这是因为构造方法需要先完成一些初始化工作&#xff0c;然后…

【报错解决】引入@ComponentScan注解注册bean容器后,导致的接口404问题

引入ComponentScan注解注册bean容器后&#xff0c;导致的接口404问题 背景 由于微服务开发中&#xff0c;经常需要在公共模块在引入一些公共模块&#xff0c;供其他服务使用&#xff0c;但是其他服务需要在启动类中配置ComponentScan注解扫描这个公共模块下注册的 bean&#…

一篇文章带你学会“二分算法”

二分算法&#xff08;也称为二分法或折半查找&#xff09;是一种在有序数组中查找特定元素的搜索算法。其基本原理是通过不断缩小查找范围来逼近目标值。以下是二分算法的详细讲解&#xff1a; 基本原理 有序性&#xff1a;二分算法要求待搜索的数组必须是有序的&#xff08;…

在下游市场需求带动下 我国气调包装机市场规模逐渐扩大

在下游市场需求带动下 我国气调包装机市场规模逐渐扩大 气调包装机又称为气调保鲜包装机&#xff0c;是一种具有气体置换功能的保鲜包装设备。气调包装机的工作原理是将原有的包装内空气抽至真空&#xff0c;再充入一定配比的混合气体&#xff0c;从而对被包装的物品进行有效保…

ubuntu开机怎么进入、退出命令行界面

要在Ubuntu系统开机时进入命令行界面&#xff0c;可以按照以下步骤操作&#xff1a; 在开机过程中按下Ctrl Alt F1组合键&#xff0c;这将会切换到第一个虚拟控制台&#xff0c;即命令行界面。如果Ctrl Alt F1没有生效&#xff0c;也可以尝试Ctrl Alt F2、Ctrl Alt F3…

点云处理中阶 Sampling

目录 一、什么是点云Sampling 二、示例代码 1、下采样 Downsampling 2、均匀采样 3、上采样 4、表面重建 一、什么是点云Sampling 点云处理中的采样(sampling)是指从大量点云数据中选取一部分代表性的数据点,以减少计算复杂度和内存使用,同时保留点云的几何特征和重…

Java module-info模块系统

开源项目SDK&#xff1a;https://github.com/mingyang66/spring-parent 个人文档&#xff1a;https://mingyang66.github.io/raccoon-docs/#/ 从Java9开始引入了模块系统&#xff08;Jigsaw项目&#xff09;&#xff0c;用于更好的管理代码依赖和封装性。模块系统允许你定义模块…

python-爬虫篇-爬取百度贴吧,段友之家的图片和视频

#!/usr/bin/env python # -*- coding: utf-8 -*-""" 爬取百度贴吧&#xff0c;段友之家的图片和视频 author: cuizy time&#xff1a;2018-05-19 """import requests import bs4 import osdef write_file(file_url, file_type):""&quo…

02 Shell编程之条件语句

1、条件测试操作 要使Shell脚本程序具备一定的智能&#xff0c;面临的第一个问题就是如何区分不同的情况以确定执行何种操作。 例如&#xff0c;当磁盘使用率超过95%时&#xff0c;发送告警信息&#xff1b;当备份目录不存在时&#xff0c;能够自动创建&#xff1b; 当源码编…