45、基于深度学习的螃蟹性别分类(matlab)

1、基于深度学习的螃蟹性别分类原理及流程

基于深度学习的螃蟹性别分类原理是利用深度学习模型对螃蟹的图像进行训练和识别,从而实现对螃蟹性别的自动分类。整个流程可以分为数据准备、模型构建、模型训练和性别分类四个步骤。

  1. 数据准备: 首先需要收集包含螃蟹图像和对应性别标签的数据集。数据集需要包含足够多的螃蟹图像,且每张图像需要标注正确的性别标签。然后对数据集进行预处理,如图像resize、归一化等操作。

  2. 模型构建: 在Matlab上选择适合的深度学习模型,如卷积神经网络(CNN)来构建螃蟹性别分类模型。可以选择预训练的模型,并进行微调以提高模型的性能。

  3. 模型训练: 将准备好的数据集输入到深度学习模型中,对模型进行训练。可以通过迭代训练的方式不断调整模型参数,提高模型的准确性和泛化能力。在训练过程中,需要对模型进行评估和调整,以提高模型对螃蟹性别的分类准确率。

  4. 性别分类: 训练好的模型可以用于测试新的螃蟹图像,对其性别进行分类。通过将图像输入到模型中,模型将输出螃蟹为雌性或雄性的概率。根据输出结果可以得到螃蟹的性别分类结果。

需要注意的是,在实际应用中,还需要考虑数据集的质量和数量、模型的选择和调整、训练参数的设置等方面的影响,以获得准确的螃蟹性别分类结果。

2、 基于深度学习的螃蟹性别分类说明

说明

使用神经网络作为分类器来根据螃蟹的物理尺寸识别螃蟹的性别。

方案

构建一个可根据螃蟹的物理测量值识别螃蟹性别的分类器

考虑螃蟹的六个物理特征:品种、前鳌、背宽、长度、宽度和厚度

现有问题是根据这 6 个物理特征的观测值识别螃蟹的性别。
六个物理特征将作为神经网络的输入,螃蟹的性别将成为目标。

根据由螃蟹的六个物理特征观测值构成的输入,神经网络应识别出螃蟹是雄性还是雌性。

通过将先前记录的输入提交给神经网络,然后调整网络以产生期望的目标输出来实现

 3、准备数据

1)数据说明

将数据组织成两个矩阵(输入矩阵 X 和目标矩阵 T)来为神经网络设置分类问题的数据。
输入矩阵的每个第 i 列将具有六个元素,表示螃蟹的品种、前鳌、背宽、长度、宽度和厚度。
目标矩阵的每个对应列将具有两个元素。第一个元素中的一表示雌蟹,第二个元素中的一表示雄蟹。

2)加载该数据集

[x,t] = crab_dataset;
size(x)
size(t)ans =6   200ans =2   200

4、构建神经网络分类器

1)设置随机种子来避免随机性

 代码

setdemorandstream(491218382)

 2)说明

双层(即,一个隐藏层)前馈神经网络可以学习任何输入-输出关系,前提是隐藏层中有足够的神经元。非输出层称为隐含层。
尝试具有 10 个神经元的单隐藏层。一般情况下,问题越困难,需要的神经元和层就越多。

代码

net = patternnet(10);
view(net)

视图效果

 3)开始训练

说明:样本自动分为训练集、验证集和测试集。训练集用于对网络进行训练。只要网络针对验证集持续改进,训练就会继续。测试集提供完全独立的网络准确度测量。

代码

[net,tr] = train(net,x,t);

试图效果

 4)均方误差

说明:性能以均方误差衡量,并以对数刻度显示。随着网络训练的加深,均方误差迅速降低。


代码

plotperform(tr)

视图效果

5、测试分类器 

1)使用测试样本测试经过训练的神经网络

 说明:网络输出的范围为 0 到 1,因此我们可以使用 vec2ind 函数根据每个输出向量中最高元素的位置来获取类索引。

代码

testX = x(:,tr.testInd);
testT = t(:,tr.testInd);
testY = net(testX);
testIndices = vec2ind(testY)testIndices =列 1 至 161     2     1     1     2     1     1     1     2     1     1     1     1     2     2     1列 17 至 302     1     2     2     1     2     2     1     1     2     2     2     1     2

2) 混淆矩阵图

说明:混淆矩阵图:衡量神经网络数据拟合程度
该混淆矩阵显示了正确和错误分类的百分比。正确分类表示为矩阵对角线上的绿色方块。错误分类表示为红色方块。

代码

plotconfusion(testT,testY)

视图效果

3) 正确和错误分类的总体百分比

代码

[c,cm] = confusion(testT,testY)
fprintf('Percentage Correct Classification   : %f%%\n', 100*(1-c));
fprintf('Percentage Incorrect Classification : %f%%\n', 100*c);c =0.0333cm =16     10    13Percentage Correct Classification   : 96.666667%
Percentage Incorrect Classification : 3.333333%

4) 受试者工作特征图

说明:显示随着输出阈值从 0 变为 1,假正率和真正率之间的相关性。
线条越偏向左上方,达到高的真正率所需接受的假正数越少。最佳分类器是线条从左下角到左上角再到右上角,或接近于该模式。

代码

plotroc(testT,testY)

视图效果

 6、总结

螃蟹性别分类是一个常见的生物学问题,可以通过深度学习技术实现自动化分类。在MATLAB中,可以利用深度学习工具包如Deep Learning Toolbox来构建和训练性别分类模型。

首先,需要准备一个包含大量螃蟹图像和对应性别标签的数据集。然后,可以利用MATLAB中的图像数据存储和预处理功能,将图像数据加载和准备好用于模型训练。接下来,可以构建一个深度学习模型,如卷积神经网络(CNN),用于学习图像特征和进行性别分类。

在模型构建之后,需要将数据集划分为训练集和测试集,并利用MATLAB中的深度学习工具包进行模型训练和评估。可以使用预训练模型进行迁移学习,也可以自己从头开始训练模型。通过调整模型结构和超参数,可以优化性能并提高性别分类准确率。

最后,可以利用训练好的深度学习模型对新的螃蟹图像进行性别分类。通过将图像输入模型并获取预测结果,可以快速准确地识别螃蟹的性别。整个过程中,MATLAB的深度学习工具包提供了强大的功能和便捷的编程接口,帮助用户轻松实现螃蟹性别分类任务。

7、源代码

代码

%% 基于深度学习的螃蟹性别分类
%说明:使用神经网络作为分类器来根据螃蟹的物理尺寸识别螃蟹的性别。
%方案:构建一个可根据螃蟹的物理测量值识别螃蟹性别的分类器。考虑螃蟹的六个物理特征:品种、前鳌、背宽、长度、宽度和厚度。现有问题是根据这 6 个物理特征的观测值识别螃蟹的性别。
%六个物理特征将作为神经网络的输入,螃蟹的性别将成为目标。根据由螃蟹的六个物理特征观测值构成的输入,神经网络应识别出螃蟹是雄性还是雌性。
%通过将先前记录的输入提交给神经网络,然后调整网络以产生期望的目标输出来实现
%% 准备数据
%说明:将数据组织成两个矩阵(输入矩阵 X 和目标矩阵 T)来为神经网络设置分类问题的数据。
%输入矩阵的每个第 i 列将具有六个元素,表示螃蟹的品种、前鳌、背宽、长度、宽度和厚度。
%目标矩阵的每个对应列将具有两个元素。第一个元素中的一表示雌蟹,第二个元素中的一表示雄蟹。
%加载该数据集
[x,t] = crab_dataset;
size(x)
size(t)
%% 构建神经网络分类器
%设置随机种子来避免随机性。
setdemorandstream(491218382)
%双层(即,一个隐藏层)前馈神经网络可以学习任何输入-输出关系,前提是隐藏层中有足够的神经元。非输出层称为隐含层。
%尝试具有 10 个神经元的单隐藏层。一般情况下,问题越困难,需要的神经元和层就越多。
net = patternnet(10);
view(net)
%开始训练。样本自动分为训练集、验证集和测试集。训练集用于对网络进行训练。只要网络针对验证集持续改进,训练就会继续。测试集提供完全独立的网络准确度测量。
[net,tr] = train(net,x,t);
%性能以均方误差衡量,并以对数刻度显示。随着网络训练的加深,均方误差迅速降低。
%绘图会显示训练集、验证集和测试集的性能。
plotperform(tr)
%% 测试分类器
%使用测试样本测试经过训练的神经网络。
%网络输出的范围为 0 到 1,因此我们可以使用 vec2ind 函数根据每个输出向量中最高元素的位置来获取类索引。
testX = x(:,tr.testInd);
testT = t(:,tr.testInd);
testY = net(testX);
testIndices = vec2ind(testY)
%混淆矩阵图:衡量神经网络数据拟合程度
%该混淆矩阵显示了正确和错误分类的百分比。正确分类表示为矩阵对角线上的绿色方块。错误分类表示为红色方块。
plotconfusion(testT,testY)
%正确和错误分类的总体百分比
[c,cm] = confusion(testT,testY)
fprintf('Percentage Correct Classification   : %f%%\n', 100*(1-c));
fprintf('Percentage Incorrect Classification : %f%%\n', 100*c);
%受试者工作特征图
%显示随着输出阈值从 0 变为 1,假正率和真正率之间的相关性。
%线条越偏向左上方,达到高的真正率所需接受的假正数越少。最佳分类器是线条从左下角到左上角再到右上角,或接近于该模式。
plotroc(testT,testY)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/31919.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【报错解决】引入@ComponentScan注解注册bean容器后,导致的接口404问题

引入ComponentScan注解注册bean容器后,导致的接口404问题 背景 由于微服务开发中,经常需要在公共模块在引入一些公共模块,供其他服务使用,但是其他服务需要在启动类中配置ComponentScan注解扫描这个公共模块下注册的 bean&#…

在下游市场需求带动下 我国气调包装机市场规模逐渐扩大

在下游市场需求带动下 我国气调包装机市场规模逐渐扩大 气调包装机又称为气调保鲜包装机,是一种具有气体置换功能的保鲜包装设备。气调包装机的工作原理是将原有的包装内空气抽至真空,再充入一定配比的混合气体,从而对被包装的物品进行有效保…

python-爬虫篇-爬取百度贴吧,段友之家的图片和视频

#!/usr/bin/env python # -*- coding: utf-8 -*-""" 爬取百度贴吧,段友之家的图片和视频 author: cuizy time:2018-05-19 """import requests import bs4 import osdef write_file(file_url, file_type):""&quo…

02 Shell编程之条件语句

1、条件测试操作 要使Shell脚本程序具备一定的智能,面临的第一个问题就是如何区分不同的情况以确定执行何种操作。 例如,当磁盘使用率超过95%时,发送告警信息;当备份目录不存在时,能够自动创建; 当源码编…

超大cvs文件导入MySQL

1 XXX.cvs 太大 使用cvs拆分HugeCSVSplitter_jb51工具进行拆分,Line Count 设置为1,000,000 注意:1 拆分后除第一个子cvs文件含有标题外,其他的子文档都不含有标题行; 2 后一个文档的第一行为前一个文档的…

MyBatis系列六: 映射关系多对一

动态SQL语句-更复杂的查询业务需求 官方文档基本介绍映射方式配置Mapper.xml的方式-应用实例注解的方式实现-应用实例课后练习 官方文档 文档地址: https://mybatis.org/mybatis-3/zh_CN/sqlmap-xml.html 基本介绍 ●基本介绍 1.项目中多对1的关系是一个基本的映射关系, 也可…

领先GPT-4o:Anthropic 推出新一代模型 Claude 3.5 Sonnet|TodayAI

Anthropic,全球领先的人工智能实验室之一,近日发布了其最新的人工智能模型——Claude 3.5 Sonnet。该模型不仅速度更快,成本更低,而且在多个关键任务上的表现超过了其前代模型 Claude 3 Opus。 更强的视觉功能与幽默感 Claude 3…

Python基础教程(二十九):operator模块

💝💝💝首先,欢迎各位来到我的博客,很高兴能够在这里和您见面!希望您在这里不仅可以有所收获,同时也能感受到一份轻松欢乐的氛围,祝你生活愉快! 💝&#x1f49…

Upload-Labs-Linux1 使用 一句话木马

解题步骤&#xff1a; 1.新建一个php文件&#xff0c;编写内容&#xff1a; <?php eval($_REQUEST[123]) ?> 2.将编写好的php文件上传&#xff0c;但是发现被阻止&#xff0c;网站只能上传图片文件。 3.解决方法&#xff1a; 将php文件改为图片文件&#xff08;例…

白嫖游戏指南,Epic喜加二:《Freshly Frosted》《Rumble Club》

前言 Epic喜加二&#xff1a;《Freshly Frosted》《Rumble Club》《Freshly Frosted》简介&#xff1a; 《Rumble Club》简介&#xff1a; 前言 接下来有时间会分享一些游戏相关可以白嫖的资源&#xff0c;包括游戏本体、游戏素材资源等等。 有需要的小伙伴可以关注这个专栏&…

IP SSL证书使用率大幅度提升

IP SSL证书的使用人数在增长&#xff0c;这一趋势背后有几个推动因素&#xff1a; 1.网络安全意识提升&#xff1a;随着网络安全事件频发&#xff0c;用户和企业对数据保护的重视程度日益增加。IP SSL证书能为基于IP地址直接访问的网站或服务提供加密&#xff0c;有助于防止数据…

没等来百度惊艳的All in AI,却等来了国产之光的盘古大模型 5.0

6月21日&#xff0c;华为开发者大会&#xff08;HDC 2024&#xff09;在广东东莞正式开幕。盘古大模型5.0的更新&#xff0c;也是此次HDC2024的另一项重头戏。在过去的一年中&#xff0c;盘古大模型正在疯狂向各行各业渗透。 此次&#xff0c;华为方面展示了他们在具身智能、医…

七连发吴谨言专访揭秘

七连发&#xff01;吴谨言专访揭秘&#xff0c;薛芳菲魅力再升级在娱乐圈的繁星中&#xff0c;总有那么一些独特的光芒&#xff0c;她们用才华和魅力照亮前行的道路。近日&#xff0c;备受瞩目的“六公主”平台连续发布了七条关于吴谨言的专访&#xff0c;引发了广大网友的热烈…

Java学习笔记(一)Java内容介绍、程序举例、DOS命令、Java跨平台特性的本质、课后练习

Hi i,m JinXiang ⭐ 前言 ⭐ 本篇文章主要介绍Java内容介绍、程序举例、DOS命令、Java跨平台特性的本质还有几道课后练习详细介绍以及部分理论知识 🍉欢迎点赞 👍 收藏 ⭐留言评论 📝私信必回哟😁 🍉博主收将持续更新学习记录获,友友们有任何问题可以在评论区留言 …

【C++】平衡二叉树(AVL树)的实现

目录 一、AVL树的概念二、AVL树的实现1、AVL树的定义2. 平衡二叉树的插入2.1 按照二叉排序树的方式插入并更新平衡因子2.2 AVL树的旋转2.2.1 新节点插入较高左子树的左侧&#xff08;LL平衡旋转&#xff09;2.2.2 新节点插入较高右子树的右侧&#xff08;RR平衡旋转&#xff09…

leetcode 二分查找·系统掌握 猜数字大小

题目&#xff1a; 题解&#xff1a; 使用最经典普通二分即可 int guessNumber(int n) {long l0,rn,mid;while(l<r){mid(rl)>>1;if(guess(mid)0)return mid;else if(guess(mid)-1)rmid-1;else lmid1;}return 0;}

全流程FVCOM水环境、污染物迁移、水交换、水质、潮流、温盐、波浪及泥沙数值模拟

近年来&#xff0c;随着计算技术的发展和对海洋、水环境问题认识的加深&#xff0c;数值模拟技术在海洋、水环境等科学研究中的应用越来越广泛。FVCOM因其独特的优点&#xff0c;成为研究海洋动力过程、污染物扩散、水质变化等问题的重要工具。作为一种基于有限体积法的数值模型…

第2章 Android应用的界面编程

&#x1f308;个人主页&#xff1a;小新_- &#x1f388;个人座右铭&#xff1a;“成功者不是从不失败的人&#xff0c;而是从不放弃的人&#xff01;”&#x1f388; &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd; &#x1f3c6;所属专栏&#xff1…

媒体邀约有啥要注意的

传媒如春雨&#xff0c;润物细无声&#xff0c;大家好&#xff0c;我是51媒体网胡老师。 媒体宣传加速季&#xff0c;100万补贴享不停&#xff0c;一手媒体资源&#xff0c;全国100城线下落地执行。详情请联系胡老师。 媒体邀约是邀请媒体参与活动或报道的重要过程&#xff0c…

搜索引擎推广基本概念与方法分享-华媒舍

销量是每个企业及个人在商业领域中追求的目标之一。而引擎霸屏推广就是一种高效的手段&#xff0c;通过该方法可以助你实现销量的狂揽。本文将为你科普引擎霸屏推广的基本概念与方法&#xff0c;帮助你了解如何运用这一有效的推广策略。 一、引擎霸屏推广 引擎霸屏推广指的是在…