一文简述AI自动化漏洞修复实践

图片

2024年,人工智能(AI)技术正以其前所未有的速度和影响力,革新着网络安全领域。AI在自动化漏洞修复方面的应用,标志着我们迈入了一个全新的网络安全时代。近日,在中国电信组织的一场技术交流会上,云起无垠云鉴实验室负责人鲁军磊先生就《AI在自动化漏洞修复方面的应用》进行了一场深入浅出的分享,其精彩的演讲内容受到了与会者的一致好评。

鲁军磊先生的演讲主要围绕三大核心议题展开:首先,全面梳理了当前大模型技术的发展趋势;其次,细致分析了传统的漏洞发现与修复流程;最后,详细探讨了AI技术与漏洞修复相结合的前沿进展。

01 大模型发展现状

网络安全技术的演进经历了从传统规则集到大数据,再到AI广泛赋能的过程。如今,大模型技术正处于探索阶段,它有望为安全领域带来更加精准、智能的解决方案。AI技术的发展,尤其是在自然语言处理(NLP)领域,已经催生了如Transformer和MoE稀疏混合专家模型等强大的模型,它们通过海量参数学习,能够处理复杂的安全问题。

图片

2022年以来,AI技术在医疗、城市、工业、能源、金融等多个领域加速落地,成为推动产业数字化的关键力量。在DevOps开发过程中,AI代码编写助手、技术剖析工具、脚本生成平台等应用层出不穷,显示出AI技术在提升开发效率和质量方面的潜力。

谷歌和微软等海外巨头厂商持续投入AI+安全领域,推出了如Sec-PaLM2和Security Copilot等工具,这些工具通过大模型技术大幅提升了泛场景安全能力,解决了威胁过载、工具繁琐和人才缺口等安全挑战。

图片

02 传统漏洞发现/修复流程

在网络安全的发展历程中,漏洞挖掘技术经历了四个不同阶段。早期的漏洞挖掘主要依赖于安全专家的手工审计,这一过程不仅耗时耗力,而且效率有限。随着技术的进步,规则驱动的扫描工具被引入,它们通过一系列预设的安全规则来自动化扫描过程,极大提升了漏洞检测的效率和准确性。随后,动态测试技术应运而生,它通过模拟软件的实际运行环境来动态发现漏洞,有效弥补了静态分析的不足。现在,已步入智能化挖掘的新纪元,遗传进化算法等先进算法开始在漏洞挖掘中发挥作用,它们模拟生物进化过程,通过迭代优化智能地识别软件漏洞,进一步提高了挖掘的精准度和效率。

在漏洞修复策略上,同样呈现出多样化的技术和方法,每种方法都有其独特的优势与局限性:

  • 依赖版本控制的修复方法:这种方法主要针对已知存在缺陷的第三方库或组件。通过简单地更新或回退到稳定的版本,可以迅速解决安全问题。然而,这种方法的弊端在于它依赖于外部维护者的更新节奏,有时可能会引入新的兼容性挑战。

  • 程序移植导向的修复方式:在软件需要跨平台或跨语言迁移的场景下,该方法发挥着重要作用。它能够处理兼容性问题,但通常需要资深工程师的深入参与,过程较为复杂且耗时。

  • 基于抽象语法树(AST)与模板的修复方式:这种方法通过结合AST和修复模板来解决简单漏洞模型的问题。它在特定场景下效率较高,但在处理复杂代码逻辑时可能会出现较高的误报率和漏报率。

  • 约束求解与符号执行的修复方式:这是一种深入的漏洞修复技术,特别适合处理复杂的内存破坏漏洞。它能够精确定位并修复深层次的逻辑缺陷,但这种方法在计算资源和性能上有一定的要求。

图片

鲁军磊先生表示,与传统方案相比,基于AI的智能体方案展现出显著的优势。它通过智能决策、自动化规划、有效性验证等手段,大幅提高了漏洞修复的效率和准确性。AI智能体能够理解复杂的上下文信息,进行精准决策,并自动化执行复杂的安全任务。

图片

03 AI技术和漏洞的结合

在当今的网络安全领域,AI Agent 正扮演着至关重要的角色。这些智能体的核心特性在于其记忆系统,包括长期记忆和短期记忆,使它们能够存储并利用历史信息更好地执行任务。此外,AI Agent 能够整合并运用各种安全工具,采用特定的框架设计方案以支持多智能体之间的协同工作。通过精心设计和优化输入提示,这些智能体的整体表现得以提升。

图片

在AI Agent时代中,人类与AI的协作模式主要分为三种:Agents模式、Embedding模式Copilot模式。这些模式根据人类和AI在任务中的不同参与程度和角色进行了明确的区分,从而实现了更加高效的合作方式。

图片

人工智能技术在漏洞修复工作中展现出了无与伦比的优势,包括处理速度和可扩展性、模式识别、数据驱动的深刻见解、减少人为偏见、保持一致性以及与语言无关的普适性。这些优势催生了以 AI 智能体为核心的智能解决方案,它们能够更有效地进行漏洞修复。通过上传任务、自动化处理复杂和重复性工作、基于安全知识的交互方式,以及多模型和多智能体之间的协同合作,AI 智能体实现了安全任务的高效率、精确性、主动性和协作性。

图片

鲁军磊先生在讨论中特别提到了“代码安全智能体”,这是一种创新产品形态,旨在帮助开发者和安全研究者深入理解安全编程挑战、提升代码质量,并促进开发与安全团队之间的协作。

图片

在AI技术的应用过程中,选择恰当的模型、构建安全的系统、关注用户体验以及进行提示工程是至关重要的。这些做法有助于确保AI技术在安全领域的负责任使用,并能够优化AI模型的响应,降低错误率和成本。智能体的开发过程涉及任务工作流的拆分、关键行动的确定、关键产物的记忆、任务目标的反思和最终的达成。

鲁军磊先生通过CWE89和CWE80的案例,展示了AI在SQL注入和XSS漏洞扫描与修复中的应用实例。AI还被应用于代码审计,帮助开发者识别并修复开源项目中存在的安全漏洞。AI系统通过建立有效的反馈循环,从实际应用中学习,不断更新安全策略和技术,以实现自我优化和提升。开源社区在推动模型和技术发展中发挥着不可或缺的作用。AI Agent作为释放LLM潜力的关键,为我们描绘了一条通往更高级人工智能的重要路径。

写在最后

AI技术在网络空间安全领域的应用正开启一个全新的时代。通过自动化漏洞修复,AI不仅提升了安全防护的效率,还增强了对复杂安全挑战的应对能力。随着技术的不断进步和应用的深入,我们有理由相信,AI将成为网络安全领域不可或缺的力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/30906.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙开发通信与连接:【@ohos.rpc (RPC通信)】

RPC通信 本模块提供进程间通信能力,包括设备内的进程间通信(IPC)和设备间的进程间通信(RPC),前者基于Binder驱动,后者基于软总线驱动。 说明: 本模块首批接口从API version 7开始支…

番外篇 | 基于改进YOLOv5的安全帽佩戴检测 | 重参数化结构RepVGG + 空间对象注意力机制RCS-OSA模块

前言:Hello大家好,我是小哥谈。RCS-YOLO是一种目标检测算法,它是基于YOLOv3算法的改进版本。通过查看RCS-YOLO的整体架构可知,其中包括RCS-OSA模块。RCS-OSA模块在模型中用于堆叠RCS模块,以确保特征的复用并加强不同层之间的信息流动。本文针对安全帽佩戴的检测就是基于RC…

Vue 的 axios二次封装

(以下的接口地址链接换成自己的写!!!) 首先在项目中src的目录下创建一个api的文件夹,在api的文件下在穿件两个文件用于二次封装 别忘了先安装axios:(在根目录下安装axios&#xff0…

Linux内核开发-替换内核

0.前言 上一章(点击返回上一章)提到如何编译内核源码,本章主要介绍如何将编好的内核替换已有的内核。 1. 替换内核 第1步:查看当前内核版本 cat /proc/version第2步: 查看机器上的内核信息 grep menuentry /boot/…

Mware Fusion Pro 13 mac版:一键掌控虚拟世界

VMware Fusion Pro 13是一款功能卓越的虚拟化软件,专为Mac操作系统量身打造。这款软件为用户提供了一个一站式的虚拟化解决方案,能够满足各种多样化的需求。 VMware Fusion Pro 13 Mac获取 VMware Fusion Pro 13的强大之处在于其采用了最 先进的虚拟化…

食品安全无小事:EasyCVR+AI技术助力食品加工厂管理透明化,构建食品安全防线

一、背景需求 近期有新闻记者曝光某省禽类屠宰加工厂脏乱差问题严重,工人脚踩鹅肠鸭肠混杂洗地水、烟头随手扔进鸭肠筐、污水捞出死鸭再上生产线…卫生情况十分堪忧。食品卫生安全频频出现负面新闻,如何实现源头治理?如何将各类食品安全风险隐…

C++ Primer Plus第五版+习题重点笔记(p250-300)

第七章 类(下) clear需要访问Screen的私有成员;而要想令这种访问合法,Screen需要把 window mgr 指定成它的友元 如果一个类指定了友元类,则友元类的成员函数可以访问此类包括非公有成员在内的所有成员 每个类负责控制自己的友元…

电子书(chm)-加载JS--CS上线

免责声明: 本文仅做技术交流与学习... 目录 cs--web投递 html(js)代码 html生成chm工具--EasyCHM 1-选择powershell 模式 生成 2-选择bitsadmin模式生成 chm反编译成html cs--web投递 cs配置监听器--->攻击---->web投递---> 端口选择没占用的, URL路径到时候会在…

《昇思25天学习打卡营第1天 | 认识MindScope AI框架和昇思大模型平台》

活动地址:https://xihe.mindspore.cn/events/mindspore-training-camp 昇思MindSpore学习笔记:探索AI的无限可能 嗨,AI爱好者们!今天,我要带你们深入了解一个强大的全场景深度学习框架——昇思MindSpore。 准备好了吗…

AWR1843BOOST上的TM4C1294NCPDT是干啥用的?

摘要:AWR1843BOOST上面有2个体积较大的芯片,一片是雷达,另一片是什么呢? 答案:它就是XDS110仿真器。 有了它,就不用再买一个仿真器了。 从AWR1843BOOST的原理图中可以看到整个 BOOST板子上只有2个比较大的…

C++switch陈述

C 使用关键字 switch、case、default对一个常数执行不同的分流,这构成多重选择的结构,形式如下 简单来说,switch后头接一小括弧,小括弧内为一常数运算式,计算出常数值若与其后case的位标(label) 相符,就会执…

Prometheus入门

Prometheus入门 Setup Reference:https://prometheus.io/docs/introduction/overview/ exporters:你可以部署在你想要获取metrics的应用旁,接收Prometheus请求,从应用程序中收集数据并转换为正确的格式,最后返回给Prometheus;Service Dis…

创建百度百科词条要多少钱?看这篇

“百度百科词条人人可编辑,词条创建和修改均为免费,不存在官方及代理商付费代编。” 是的,百度百科免费开放,任何人都可以自己做,但是作为一个给上百家企业和个人创建百度百科词条的专业人士来说,给大家一…

模型预测控制MPC详解(附带案例实现)

模型预测控制MPC详解(附带案例实现) 文章目录 模型预测控制MPC详解(附带案例实现)1. 最优控制问题2. 什么是MPC3. 二次规划Quadratic Programming4. MPC为什么可以转换成QP问题(推导过程)5. MPC总结5.1 MPC…

基于51单片机的篮球计分器设计

一.硬件方案 本设计用由AT89C51编程控制LED七段数码管作显示的球赛计时计分系统。该系统具有赛程定时设置、赛程时间暂停、及时刷新甲乙双方的成绩等功能。 电路主要由STC89C52单片机最小系统数码管显示模块数码管驱动模块蜂鸣器模块按键模块; 二.设计功能 &…

哔哩哔哩视频URL解析原理

哔哩哔哩视频URL解析原理 视频网址解析视频的原理通常涉及以下几个步骤: 1、获取视频页面源代码:通过HTTP请求获取视频所在网页的HTML源代码。这一步通常需要处理反爬虫机制,如验证码或用户登录。 2、解析页面源代码:分析HTML源代…

Transformer学习理解

1.前言 本文介绍当下人工智能领域的基石与核心结构模型——Transformer,为什么说它是基石,因为以ChatGPT为代表的聊 天机器人以及各种有望通向AGI(通用人工智能)的道路上均在采用的Transformer。 Transformer也是当下NLP任…

【上海交大】博士生年度进展报告模板

上海交通大学 博士生年度进展报告模板 比较不好找,在交我办中发起申请流程后才能看到链接,链接如下: https://www.gs.sjtu.edu.cn/xzzx/pygl/15

爬取CSDN博文到本地(包含图片,标签等信息)

文章目录 csdnToMD改进将CSDN文章转化为Markdown文档那有什么办法快速得到md文档?例如:获取单个文章markdown获取所有的文章markdown 项目中待解决的问题 csdnToMD 项目原作者:https://gitee.com/liushili888/csdn-is—mark-down 改进后仓库…

Z语言学习——基于通讯案例

目录 1数据类型 2初始状态 3 Alice的消息发送 4 Bob接收与发送消息 5 Alice接收消息 6消息的增删改查 6.1 删除消息 6.2查询消息 6.3修改/增加消息 7定理证明——重要目的 案例背景: (1)构建一个交互式的通讯方案; (2)攻击者控制了所有的通讯…