【AI大模型】自动生成红队攻击提示--GPTFUZZER

本篇参考论文为:
Yu J, Lin X, Xing X. Gptfuzzer: Red teaming large language models with auto-generated jailbreak prompts[J]. arXiv preprint arXiv:2309.10253, 2023.
https://arxiv.org/pdf/2309.10253

一 背景

虽然LLM在今天的各个领域得到了广泛的运用,但是LLM并不一定完全可靠,它有时会产生有毒或者误导性的内容,并且有时候还会产生一些“幻觉”,从而导致一些不真实或者毫无意义的输出。

越狱攻击
越狱攻击是使用精心制作的提示来绕过LLM保护措施,潜在地引发有害的响应。在释放LLM潜力的同时,这些攻击也可能产生违反提供商指导方针甚至法律界限的输出。
现在大多数现有的越狱攻击研究主要依赖于手工制作提示符,虽然这些手工制作的提示可以很好地修改为特定的LLM行为,但这种方法有几个固有的局限性:
手动制作prompt的局限性主要包括以下几个方面:

可扩展性差:随着LLM的数量和版本增加,手动设计prompt变得不切实际。每个模型都需要定制的prompt,这会导致大量重复劳动和难以管理的工作量。
劳动力密集型:制作有效的prompt需要深入了解LLM的行为,并投入大量的时间和精力。这使得安全性测试变得昂贵,特别是考虑到LLM的持续更新和进化。
覆盖范围有限:人工方法可能无法完全覆盖所有的漏洞,因为它们受到人类偏见和注意力的限制。自动化的系统可以探索更广泛的潜在漏洞,提供更全面的健壮性评估。
适应性差:LLM模型不断更新和迭代,手动方法难以跟上这些快速的变化,可能导致新的漏洞被遗漏。
一致性和标准化难:手工制作的prompt可能在质量和表现上参差不齐,这使得安全性评估结果的可比性较差。
成本和时间投入:手动制作prompt需要大量的时间和资源投入,这增加了安全性测试的成本。
误报率高:手工制作的prompt可能包含不必要的重复或混淆性的元素,导致误报率高,降低了测试的效率。
缺乏动态性和持续改进:手工制作的prompt一旦制作完成,很难进行动态调整或持续改进。
忽略复杂交互:手工制作的prompt可能无法充分考虑LLM的多轮交互和上下文理解,导致测试结果的不准确性。
在这里插入图片描述

二 GPTFUZZER

基于以上的问题,该论文提出了一种名为GPTFUZZER的全新黑盒测试框架,用于自动生成用于测试语言模型(LLM)的安全性的模板。GPTFUZZER的核心思想是基于AFL测试框架,利用人类编写的初始模板,通过变异操作产生新的模板,以检测LLM的潜在漏洞。GPTFUZZER包含三个关键组件:种子选择策略、变异操作符和判断模型。种子选择策略用于平衡效率和多样性,变异操作符用于产生语义上等价或类似的句子,判断模型用于评估模板的成功率。

GPTFUZZER框架的实施步骤可以概括为以下几个主要阶段:

初始化:收集人类编写的初始模板,这些模板通常包含一个场景描述和一个问题占位符,用于引导LLM生成相关内容。
种子选择:从模板池中随机选择一个模板作为当前迭代的种子。为了提高效率,GPTFUZZER采用了多种种子选择策略,如随机选择、轮询选择和UCB选择等。
变异操作:使用ChatGPT等LLM对种子模板进行变异操作,以生成新的模板。变异操作包括生成、交叉、扩展、缩短和改写等,以增加模板的多样性和新颖性。
生成提示:将变异后的模板与目标问题结合,生成一个完整的提示,用于查询目标LLM。
查询LLM:将生成的提示发送给目标LLM,获取模型的响应。
判断模型:使用预训练的RoBERTa模型评估响应是否是违规的,从而判断模板是否成功“越狱”。
模板更新:如果响应被判定为违规,则保留该变异模板;如果响应是合规的,则丢弃该模板。
迭代:重复上述步骤,直到达到查询预算上限或满足停止条件。
结果分析:分析GPTFUZZER生成的有效模板,评估攻击成功率,分析不同组件对攻击性能的影响,并进行比较实验。
在这里插入图片描述
变异操作符是GPTFUZZER框架中的关键组件之一,用于对初始模板进行变异,以生成新的模板。变异操作符的目的是增加模板的多样性和新颖性,以提高发现LLM潜在漏洞的机会。GPTFUZZER中使用的变异操作符主要包括以下几种:

生成(Generate):生成一个新的模板,其风格与原始模板相似,但内容不同。例如,可以改变场景描述或问题类型。
交叉(Crossover):将两个不同的模板结合起来,以产生新的模板。这种操作可以结合两个模板的优点,生成更具攻击力的模板。
扩展(Expand):在原始模板的开头添加新的内容,以扩展模板。
缩短(Shorten):删除原始模板中的一些句子,使模板更加简洁。
改写(Rephrase):对原始模板中的每个句子进行改写,改变句子的结构和语法,以产生语义上等价但表达方式不同的模板。
这些变异操作符通过ChatGPT等LLM实现,利用LLM生成文本的能力,从而获得变异后的模板。例如,可以使用ChatGPT生成一个新的场景描述或问题,将其插入原始模板中;或者使用ChatGPT交叉两个不同的模板,生成一个新的模板。通过多种变异操作的组合,GPTFUZZER能够生成大量新颖的模板,以提高发现LLM漏洞的机会。

总体而言,GPTFUZZER提供了一个有效的黑盒测试框架,用于生成LLM的通用攻击模板,有助于评估LLM的安全性

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/11428.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MacOS java多版本安装与管理

Home - SDKMAN! the Software Development Kit Manager # 安装sdkman curl -s "https://get.sdkman.io" | bashsource "$HOME/.sdkman/bin/sdkman-init.sh"sdk version正常出现sdkman版本号就安装成功了 # 安装java # 安装java8 sdk install java 8.0…

论文笔记:仅一个进程故障就无法达成共识

仅一个进程故障就无法达成共识 仅一个进程故障指的是在异步的分布式系统中 摘要 异步系统的共识问题(consensus)涉及一组进程,其中有的进程可能不可靠(unreliable)。共识问题要求可靠的进程一致地从两个侯选中决定&…

【MATLAB源码-第207期】基于matlab的单相光伏并网系统仿真,并网策略采用基于扰动观测法的MPPT模型和使用电压电流双闭环SPWM控制。

操作环境: MATLAB 2022a 1、算法描述 本文将重点分析光伏发电最大功率点跟踪(MPPT)技术和逆变器的并网控制技术,并在Simulink环境下建立模拟系统,以体现这些技术的应用与效果。文章结构如下:首先简介光伏…

OpenAI下周发布更新;TikTok将自动标记AIGC;智谱AI亮相2024 ICLR

OpenAI 官宣下周举办直播发布更新 OpenAI 今日凌晨官宣,将在当地时间 5 月 13 日上午十点(北京时间 5 月 14 日凌晨两点)在官网进行直播,届时将演示一些 ChatGPT 和 GPT-4 的更新。 OpenAI CEO Sam Altman 补充表示,届…

2024软件测试面试必备面试题大全

1. 请自我介绍一下(需简单清楚的表述自已的基本情况,在这过程中要展现出自信,对工作有激情,上进,好学) 面试官您好,我叫###,今年26岁,来自江西九江,就读专业是电子商务,…

PCIE协议-2-事务层规范-MEM/IO/CFG request rules

2.2.7 内存、I/O和配置请求规则 以下规则适用于所有内存、I/O和配置请求。每种类型的请求还有特定的额外规则。 所有内存、I/O和配置请求除了常见的头标字段外,还包括以下字段:requester ID[15:0]和Tag[9:0],形成事务ID。Last DW BE[3:0] a…

ICode国际青少年编程竞赛- Python-2级训练场-列表遍历

ICode国际青少年编程竞赛- Python-2级训练场-列表遍历 1、 for i in range(3):Flyer[i].step(2) Dev.step(6)2、 for i in range(7):Flyer[i].step() Dev.step(Item.x - Dev.x)3、 for i in range(3):Flyer[i].step(1) Dev.step(4) Dev.turnLeft() Dev.step(2) Dev.turnL…

【APM】在Kubernetes中搭建OpenTelemetry+Loki+Tempo+Grafana链路追踪(一)

文章目录 1、最终效果2、前提准备2、环境信息3、服务集成(Opentelemetry ->Tempo)3.1 上报链路数据3.1.1 下载opentelemetry-agent3.1.2 启动配置业务app3.1.3 配置opentelemetry输入输出3.1.4 配置grafana datasource3.1.4.1 配置tempo3.1.4.2 配置l…

快速判断出485从站设备是否支持MODBUS RTU无线通讯

对于变频器和仪表设备,都支持485串口通讯,那么怎么判断从站设备支持那种协议呢?通常分为两种方式去判断:1.从设备参数参看2.从设备通讯报文查看。本次文章以以台达MH300系列变频器为例。 1.从设备通讯参数查看 使用设备之前一定…

资料如何打印更省钱

在日常工作和学习中,我们经常需要打印各种资料。然而,随着打印成本的不断提高,如何更省钱地打印资料成为了大家关注的焦点。今天,就为大家分享一些资料打印的省钱技巧,并推荐一个省钱又省心的打印平台。 首先&#xff…

【话题】软件开发的航海图:程序员的实用神器探秘

大家好,我是全栈小5,欢迎阅读小5的系列文章,这是《话题》系列文章 目录 背景一、代码编写二、版本控制三、测试与调试四、部署与运维五、总结文章推荐 背景 在软件开发的广阔海洋中,每一位程序员都是一位勇敢的航海家&#xff0c…

数据结构-栈的讲解

栈的概念及结构 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。 进行数据插入和删除操作的一端称为栈顶,另一端称为栈底(因为先进后出)。栈中的数据元素遵守后进先出LIFO(Last In Firs…

学习注意力机制并将其应用到网络中

什么是注意力机制 注意力机制的核心重点就是让网络关注到它更需要关注的地方。 当我们使用卷积神经网络去处理图片的时候,我们会更希望卷积神经网络去注意应该注意的地方,而不是什么都关注,我们不可能手动去调节需要注意的地方,…

证明力引导算法forceatlas2为什么不是启发式算法

一、基本概念 吸引力 F a ( n i ) ∑ n j ∈ N c t d ( n i ) ω i , j d E ( n i , n j ) V i , j \displaystyle \bm{F}_a(n_i) \sum_{n_j \in \mathcal{N}_{ctd}(n_i)} \omega_{i,j} \; d_E(n_i,n_j) \bm{V}_{i,j} Fa​(ni​)nj​∈Nctd​(ni​)∑​ωi,j​dE​(ni​,nj​…

class常量池、运行时常量池和字符串常量池的关系

类常量池、运行时常量池和字符串常量池这三种常量池,在Java中扮演着不同但又相互关联的角色。理解它们之间的关系,有助于深入理解Java虚拟机(JVM)的内部工作机制,尤其是在类加载、内存分配和字符串处理方面。 类常量池…

NeurIPS‘24 截稿日期逼近 加拿大温哥华邀你共赴盛会

会议之眼 快讯 第38届NeurIPS24(Conference and Workshop on Neural Information Processing Systems)即神经信息处理系统研讨会将于 2024 年 12月9日-15日在加拿大温哥华会议中心举行! NeurIPS 每一年都是全球AI领域的一场盛宴,吸引着来自世界各地的顶…

5.10.8 Transformer in Transformer

Transformer iN Transformer (TNT)。具体来说,我们将局部补丁(例如,1616)视为“视觉句子”,并将它们进一步划分为更小的补丁(例如,44)作为“视觉单词”。每个单词的注意力将与给定视…

信号和槽基本概念

🐌博主主页:🐌​倔强的大蜗牛🐌​ 📚专栏分类:QT❤️感谢大家点赞👍收藏⭐评论✍️ 目录 一、概述 二、信号的本质 三、槽的本质 一、概述 在 Qt 中,用户和控件的每次交互过程称…

Bootloader+升级方案

随着设备的功能越来越强大,系统也越来越复杂,产品升级也成为了开发过程不可或缺的一道程序。在工程应用中,如何在不更改硬件的前提下通过软件的方式实现产品升级。通过Bootloader来实现固件的升级是一种极好的方式,Bootloader是单…

I2CKD : INTRA- AND INTER-CLASS KNOWLEDGE DISTILLATION FOR SEMANTIC SEGMENTATION

摘要 本文提出了一种新的针对图像语义分割的知识蒸馏方法,称为类内和类间知识蒸馏(I2CKD)。该方法的重点是在教师(繁琐模型)和学生(紧凑模型)的中间层之间捕获和传递知识。对于知识提取&#x…