LangChain:大模型框架的深度解析与应用探索

       在数字化的时代浪潮中,人工智能技术正以前所未有的速度蓬勃发展,而大模型作为其中的翘楚,以生成式对话技术逐渐成为推动行业乃至整个社会进步的核心力量。再往近一点来说,在公司,不少产品都戴上了人工智能的帽子,各种高大上人工对话界面,作为一个已经工作8年的老程序员来说,一种压力感扑面而来,这使得我不得不去接受新的东西,在学习和使用Prompt、function-call和Rag后发现了一个对AI初学者极其友好的框架——Langchain,帮助我更好更快的使用大模型。

        在接下来的文章里,我将带着大家来分析和感受LangChain的发展和应用。通过深入了解,我们可以更好地利用LangChain的优势和避免它的不足之处。

LangChain总结

面向大模型的开发框架(SDK)

        LangChain是一套被设计成易于使用的软件工具集,专门为程序员提供了使用大型模型的能力。它的主要目的是帮助程序员减少开发工作量,并且将底层的复杂和重复性工作封装起来。使用LangChain,你可以简单方便地利用这些封装好的功能来开发软件。这个框架的初衷就是让你能够更加高效地开发,并且更加轻松地使用大型模型的能力。

基于软件工程思维,要更关注接口变更

        使用这套框架确实需要一定的代码能力,因为这个框架的设计本质是基于软件工程思路的,对编程基础有一定要求。另外,大模型技术和辅助工具正处于一个初级阶段,发展时间并不长,大模型诞生也就好一年多的时间。因此,在学习这些工具时,我们最好不要过于专注于每个接口的具体用法,例如像前端框架vue对于这个功能怎么实现,这类工具不能这么学,因为大模型技术目前还处于初级阶段,未来仍会有很多变化。我们更应该关注这些框架的设计思路和模块结构,因为它们的模块大部分可能不会改变,只是接口可能会有一些细微的调整。更应该关注它的设计思路在你的实际工作中能否得到参考,通过这些思考我到底是直接拿它来用,还是参考它来设计,还是完全做一个更新的设计,这些都会在实际开发中大有裨益。

 AGI 时代软件工程的一个探索和原型,迭代速度快

        LangChain的迭代速度明显快于Semantic Kernel,几乎每天都有一个新版本发布。LangChain的发展是一个学习和探索的过程,在早期存在许多不成熟的接口,以及一些设计过于复杂的函数或流程。但是通过这么多次的迭代,几乎所有的问题都得到了修复,可以说它的成熟度是与日俱增的,目前来看,LangChain已经具备了一定的可用性的。一些模块在设计上非常成熟,具备拿来就用的,甚至在生产机使用时没问题的,而有些模块设计的还是很粗糙,例如第三方功能实现的一些模块,不建议使用的。还有一些模块在设计上没有问题,但在实际工作中可能并不是必需的,完全取决于你的需求。接下来我将带着大家来分析和感受。

与其他开发框架的对比

数据来源:GitHub Star History

        Github的平行树的对比,LangChain的欢迎程度明显还是遥遥领先的,之所以会形成这个情况,是因为LangChain最早期设计是比较简单易懂,不像Semantic-kernel是有一套宏大的理念导致整个抽象程度太高,导致它的可读性或感受上很晦涩。所以Langchain比较方便大家知道怎么用,拿来就知道好不好用,都能很直接的评估出来。

LangChain 的核心组件

模型 I/O 封装

  • LLMs:大语言模型,因为它对模型、检索都做了统一的封装,调用llama或其他大模型实现本地的Rag会更加简单。
  • Chat Models:一般基于 LLMs,但按对话结构重新封装,
  • PromptTemple:提示词模板,对提示词模板的操作给以了封装。
  • OutputParser:解析输出,模型的输出结果,给了不同的解析工具,这个是Semantic-kernel所没有的,也是它方便使用的功能之一。

数据连接封装

  • Document Loaders:如何加载各种格式文档,集结了各种格式文件的加载器。
  • Document Transformers:封装了对文档的常用操作工具,如:split, filter, translate, extract metadata, etc
  • Text Embedding Models:对不同的embedding模型做了统一的封装,不管你底层是什么,基本都是统一的接口都可以去使用。然后对各种各样的三方的向量数据库做了封装,也就是说你不用太关心,背后向量数据库到底是啥,通过Langchain的统一的接口去调用。文本向量化表示,用于检索等操作。
  • Verctorstores: (面向检索的)向量的存储,就是将向量数据库的封装后转成一个检索器
  • Retrievers: 向量的检索,一个用于检索的工具。

记忆封装

  • Memory:这里不是物理内存,从文本的角度,可以理解为“上文”、“历史记录”或者说“记忆力”的管理。对上下文的管理做了一层封装或赋予了一组工具。

架构封装

        最核心的是在架构上做了一层封装,包括了调用一系列组合的pipeline。

  • Chain:实现一个功能或者一系列顺序功能组合,pipeline顺序调用。
  • Agent:智能体架构的封装,根据用户输入,自动规划执行步骤,自动选择每步需要的工具,最终完成用户指定的功能
    • Tools:调用外部功能的函数,例如:调 google 搜索、文件 I/O、Linux Shell 等等
    • Toolkits:操作某软件的一组工具集,例如:操作 DB、操作 Gmail 等等

Callbacks

      他每个模块内部到底发生了什么,它都给了你一些Callback事件。具体可参考官网,里面有更为详细的讲解。

        可参考官网:Callbacks | 🦜️🔗 LangChain

主要用途

解决Chain的问题

        以一个Pipline (一种既定流程去调用不同组件) 的维度去看。核心解决的是一个查询(Query)进来后,可以将问题填充到提示词(Prompt)模板中去,然后通过Prompt去调用大语言模型(LLM)输出的模型结果,其结果(Json / List / Text / Code ...)可以通过Output Parser进行解析提取核心数据放到下个输入环节中,以填充新的Prompt模板,如此反复,不断提炼输出内容。

        在前面套流程之上还赋予了上下文管理(Memory)能力和连接外部数据(Retriever)能力及工具。连接外部数据最典型的方式就是以向量数据进行向量检索。核心利用了这几大模块,解决了和大模型打交道常见的功能,然后将这些功能做了统一的封装。做了统一封装的好处就是语言模型我可以换不同的模型的同时还不用该接口,整个代码不用变我就把这个大预言模型就给换了。

构成智能体(Agent)

        智能体就是经过自己反复思考,选择不同的工具,通过多步(调用工具 -> 拿到工具结果 ->分析结果 -> 选择工具)处理一个复杂任务,这样一个流程作为大模型诞生后的一个新的模式。而里面一个反复思考都是在调用大模型(LLM),这个调用流程其实就是用上面的Chain来进行封装组成的,而LangChain也对智能体架构也做了一个标准化的封装。

相关文档(以 Python 版为例)

        官方文档还是比较清晰的,Docs是LangChain自己提供的核心组件所有得文档和例子;Integrations是所有跟三方的服务和组件的连接,比如你要连接各种各种的语言模型Llama,或不同的向量数据等都在这里面可以找到;Use cases则是Langchain封装好的流程和功能,例如怎么实现Rag、怎么实现Sql查数据库、怎么实现checkout和怎么实现摘要这类的例子;更深一点比如说怎么做debugging、调试部署、评估这类相关的文档里没有的技巧和方法都在Guides里边。

主要几大核心文档

  • 功能模块:主要模块有Model I/O、Retrieval、Agents、Chains、Memory、Callbacks这类

 直通车:https://python.langchain.com/docs/get_started/introduction

  • API 文档:针对以上更细的内容,如每个函数、每个类,参数、响应的接口文档描述。

直通车:https://api.python.langchain.com/en/latest/langchain_api_reference.html

  • 三方组件集成:提供程序具有独立的langchain-{provider}包,用于改进版本控制、依赖关系管理和测试。

直通车:https://python.langchain.com/docs/integrations/platforms/

  • 官方应用案例:包含常见对接技术和例子

直通车:https://python.langchain.com/docs/use_cases

  • 调试部署等指导:https://python.langchain.com/docs/guides/debugging

小试牛刀

安装最新LangChain依赖

pip install --upgrade langchain
pip install --upgrade langchain-openai # v0.1.0新增的底包
pip install qianfan #安装文言千帆模型Api

OpenAI vs Langchain

        接下来会用以下这两个例子对比Langchain的优势。

多轮对话实现

OpenAI

        原生的Openai通过一个json数组,每一轮都一个任务一个content来去表示一个对话上下文。


# 加载 .env 文件到环境变量
from dotenv import load_dotenv, find_dotenv
from openai import OpenAI_ = load_dotenv(find_dotenv())# 初始化 OpenAI 服务。会自动从环境变量加载 OPENAI_API_KEY 和 OPENAI_BASE_URL
client = OpenAI()# 消息格式
messages = [{"role": "system","content": "你是AI助手小京。"},{"role": "human","content": "我是Csdn的一名博主,我叫Muller"},{"role": "assistant","content": "欢迎!"},{"role": "user","content": "我是谁?"},]# 调用 GPT-3.5
chat_completion = client.chat.completions.create(model="gpt-3.5-turbo",messages=messages
)# 输出回复
print(chat_completion.choices[0].message.content)
# 您自己告诉我您是CSDN的博主Muller。
Langchian

        那么在langchain的框架下,可以通过它定义的结构来去表示一个对话。然后呢我们还是把这个对话通过invoke接口来传给大模型。

# 加载 .env 到环境变量
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())from langchain_openai import ChatOpenAIllm = ChatOpenAI()  # 默认是gpt-3.5-turbofrom langchain.schema import (AIMessage, #等价于OpenAI接口中的assistant roleHumanMessage, #等价于OpenAI接口中的user roleSystemMessage #等价于OpenAI接口中的system role
)
messages = [SystemMessage(content="从现在开始你叫AI助手-小京。"),HumanMessage(content="我是Csdn的一名博主,我叫Muller"),AIMessage(content="欢迎!"),HumanMessage(content="我是谁")
]
response = llm.invoke(messages)
print(response.content)#你是Muller,一名CSDN的博主。

Langchains实现会更加的简洁,且可以轻松实现一个Pipline。

国产模型调用

OpenAi
import json
import requests
import os# 通过鉴权接口获取 access token
def get_access_token():"""使用 AK,SK 生成鉴权签名(Access Token):return: access_token,或是None(如果错误)"""url = "https://aip.baidubce.com/oauth/2.0/token"params = {"grant_type": "client_credentials","client_id": "ERNIE_CLIENT_ID","client_secret": "ERNIE_CLIENT_SECRET"}return str(requests.post(url, params=params).json().get("access_token"))# 调用文心4.0对话接口
def get_completion_ernie(prompt):url = "https://aip.baidubce.com/rpc/2.0/ai_custom/v1/wenxinworkshop/chat/completions_pro?access_token=" + get_access_token()payload = json.dumps({"messages": [{"role": "user","content": prompt}]})headers = {'Content-Type': 'application/json'}response = requests.request("POST", url, headers=headers, data=payload).json()return response["result"]class RAG_Bot:def __init__(self,  llm_api, n_results=2):self.llm_api = llm_apiself.n_results = n_resultsdef chat(self, user_query):# 3. 调用 LLMresponse = self.llm_api(user_query)return response# 创建一个RAG机器人
new_bot = RAG_Bot(llm_api=get_completion_ernie
)user_query = "你是谁?"response = new_bot.chat(user_query)print(response)
Langchain
# 其它模型分装在 langchain_community 底包中
from langchain_community.chat_models import QianfanChatEndpoint
from langchain_core.messages import HumanMessage
import osllm = QianfanChatEndpoint(qianfan_ak=os.getenv('ERNIE_CLIENT_ID'),qianfan_sk=os.getenv('ERNIE_CLIENT_SECRET')
)messages = [HumanMessage(content="你是谁")
]ret = llm.invoke(messages)print(ret.content)

通过模型封装,实现不同模型的统一接口调用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/web/10681.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

初识C语言——第十八天

循环while/do while while 语法结构 while(表达式) 循环语句; break:在while循环中,break用于永久的终止循环 continue:在while循环中,continue的作用是跳过本次循环continue后面的代码 直接去判断部分,看是否进行下一次循环。 注意事项…

Logstash详解

Logstash详解:构建强大日志收集与处理管道的利器 一、引言 在大数据和云计算的时代,日志数据作为企业运营和故障排查的重要依据,其收集、处理和分析能力显得尤为重要。Logstash,作为一款强大的日志收集、处理和转发工具&#xf…

[AI OpenAI-doc] 安全最佳实践

使用我们的免费 Moderation API OpenAI 的 Moderation API 是免费使用的,可以帮助减少您完成中不安全内容的频率。或者,您可能希望开发自己的内容过滤系统,以适应您的使用情况。 对抗性测试 我们建议对您的应用进行“红队测试”&#xff0…

即插即用篇 | YOLOv8引入轴向注意力 Axial Attention | 多维变换器中的轴向注意力

本改进已集成到 YOLOv8-Magic 框架。 我们提出了Axial Transformers,这是一个基于自注意力的自回归模型,用于图像和其他组织为高维张量的数据。现有的自回归模型要么因高维数据的计算资源需求过大而受到限制,要么为了减少资源需求而在分布表达性或实现的便捷性上做出妥协。相…

解决wangEditor使用keep-alive缓存后,调用editor.cmd.do()失败

前提:wangeditor版本:4.7.11 vue版本:vue2 问题:在使用wangeditor富文本编辑器时,需求需要通过点击一个按钮,手动插入定义好的内容,所以使用了 editor.cmd.do(insertHTML, ....) 方法新增…

青少年软件编程(Python)等级考试试卷(二级)2024年3月

2024.03电子学会青少年软件编程 Python二级 等级考试试卷 一、单选题 1.期末考试结束了,全班的语文成绩都储存在列表score 中,班主任老师请小明找到全班最高分,小明准备用Python 来完成,以下哪个选项,可以获取最高分…

较难题 链表的回文结构

本题来自链表的回文结构_牛客题霸_牛客网 (nowcoder.com) 234. 回文链表 - 力扣(LeetCode) 题面: 对于一个链表,请设计一个时间复杂度为O(n),额外空间复杂度为O(1)的算法,判断其是否为回文结构。 给定一个链表的头…

03.Linux文件操作

1.操作系统与Linux io框架 1.1 io与操作系统 1.1.1 io概念 io 描述的是硬件设备之间的数据交互,分为输⼊ (input) 与输出 (output)。 输⼊:应⽤程序从其他设备获取数据 (read) 暂存到内存设备中;输出:应⽤程序将内存暂存的数据…

FANUC机器人基本保养概述

对于工业机器人来说,定期保养机器人可以延长机器人的使用寿命。对于FANUC机器人来说,FANUC机器人的常规保养周期可以分为日常、三个月、六个月、一年、两年、三年。以下是FANUC机器人的基本保养周期概览: 在实际生产应用中,可以参…

具身智能论文

目录 1. PoSE: Suppressing Perceptual Noise in Embodied Agents for Enhanced Semantic Navigation2. Embodied Intelligence: Bionic Robot Controller Integrating Environment Perception, Autonomous Planning, and Motion Control3. Can an Embodied Agent Find Your “…

7.STL_string(详细)

1. 什么是STL STL(standard template libaray-标准模板库):是C标准库的重要组成部分,不仅是一个可复用的组件库,而且 是一个包罗数据结构与算法的软件框架。 2. STL的版本 原始版本 Alexander Stepanov、Meng Lee 在惠普实验室完成的原始版…

maven远程仓库访问顺序

首先需要了解一下各个配置文件,主要分为三类: 全局配置文件(${maven.home}/conf/settings.xml),maven安装路径下的/conf/settings.xml用户配置文件(%USER_HOME%/.m2/settings.xml),windows用户文件夹下项目配置文件:p…

C/C++ 入门(10)list类(STL)

个人主页:仍有未知等待探索-CSDN博客 专题分栏:C 欢迎来指教! 目录 一、标准库中的list 1、了解 2、常用接口说明 a.常见的构造函数 b.迭代器 c. Capacity​编辑 d.Element access e.Modifiers 二、实现 1、框架 a.节点 b.迭代器 …

简单易懂的Java Queue入门教程!

哈喽,各位小伙伴们,你们好呀,我是喵手。运营社区:C站/掘金/腾讯云;欢迎大家常来逛逛 今天我要给大家分享一些自己日常学习到的一些知识点,并以文字的形式跟大家一起交流,互相学习,一…

如何建设智慧党校

随着信息技术的飞速展开,特别是近年移动互联网技术,物联网技术,人工智能技术,大数据数据的深入展开,我国快速的进入信息化社会,信息化对各行各业的改造越来越深入,任何职业,任何安排…

SSM【Spring SpringMVC Mybatis】—— Spring(一)

目录 1、初识Spring 1.1 Spring简介 1.2 搭建Spring框架步骤 1.3 Spring特性 1.5 bean标签详解 2、SpringIOC底层实现 2.1 BeanFactory与ApplicationContexet 2.2 图解IOC类的结构 3、Spring依赖注入数值问题【重点】 3.1 字面量数值 3.2 CDATA区 3.3 外部已声明be…

浅谈ArrayList和LinkedList的区别

ArrayList和LinkedList在Java中都是常用的List接口的实现类,但它们之间存在一些显著的区别。 实现方式: ArrayList:基于数组实现。内部使用一个动态数组来存储元素,这意味着可以通过索引快速访问元素,时间复杂度为O(1)…

算法学习笔记(Nim游戏)

N i m Nim Nim游戏 n n n堆物品,每堆有 a i a_i ai​个,每个玩家轮流取走任意一堆的任意个物品,但不能不取,取走最后一个物品的人获胜。 N i m Nim Nim游戏是一种经典的公平组合游戏。现在对它进行分析。 首先定义两个博弈中的状…

【Chisel】chisel中怎么处理类似verilog的可变位宽和parameter

在 Chisel 中处理可变位宽和参数的方式与 Verilog 有一些不同,因为 Chisel 是建立在 Scala 语言之上的。以下是如何在 Chisel 中处理这些概念的方法: 参数化(Parameters) 在 Chisel 中,参数化是通过在模块构造函数中定…

VUE使用饿了么的上传组件时实现图片预览

创作灵感 最近在写项目时,遇到了上传头像的需求,我使用的是element组件中的upload组件。但是在使用时,我需要实现预览、手动上传头像等功能。然而在使用饿了么组件时,这些功能还是需要我们自己去手动实现的,在手动实现…