Linux-进程间通信:System V消息队列

目录

  • System V IPC概述
    • 标识符与IPC Key
  • System V消息队列
    • 创建或打开一个消息队列
    • 发送消息
    • 接收消息
    • 控制消息队列
      • 1、IPC_STAT
      • 2、IPC_SET
      • 3、IPC_RMID
    • 查看系统当前的消息队列
    • 代码示例

System V IPC(Inter-Process Communication)是一组用于在 Unix-like 操作系统上进行进程间通信的标准,它们最初由 AT&T 在 System V 发行版中引入。System V IPC 提供了三种主要的通信机制:

  1. 消息队列(Message Queues):允许进程通过消息进行通信,每个消息都有一个类型标识符。
  2. 信号量(Semaphores):用于进程间的同步和互斥控制,可以用来管理资源的访问。
  3. 共享内存(Shared Memory):允许多个进程访问同一块物理内存,这些进程可以在共享内存中直接读写数据,通常用于高性能的数据交换。

System V IPC概述

System V IPC相关的接口如图所示:

在这里插入图片描述

System V IPC未遵循“一切都是文件”的Unix哲学,而是采用标识符ID和键值来标识一个System V IPC对象。

System V IPC对象的作用范围是整个操作系统,内核没有维护引用计数。调用各种get函数返回的ID是操作系统范围内的标识符,对于任何进程,无论是否存在亲缘关系,只要有相应的权限,都可以通过操作System V IPC对象来达到通信的目的。

System V IPC对象具有内核持久性。哪怕创建System V IPC对象的进程已经退出,哪怕有一段时间没有任何进程打开该IPC对象,只要不执行删除操作或系统重启,后面启动的进程依然可以使用之前创建的System V IPC对象来通信。

System V IPC对象在文件系统中没有实体文件与之关联。我们不能用文件相关的操作函数来访问它或修改它的属性。所以不得不提供专门的系统调用(如msgctl、semop等)来操作这些对象。在shell中无法用ls查看存在的IPC对象,无法用rm将其删除,也无法用chmod来修改它们的访问权限。幸好Linux提供了ipcs、ipcrm和ipcmk等命令来操作这些对象。

标识符与IPC Key

System V IPC对象是靠标识符ID来识别和操作的。该标识符要具有系统唯一性。这和文件描述符不同,文件描述符是进程内有效的。一个进程的文件描述符4和另一个进程的文件描述符4可能毫不相干。但是IPC的标识符ID是操作系统的全局变量,只要知道该值(哪怕是猜测获得的)且有相应的权限,任何进程都可以通过标识符进行进程间通信。

三种IPC对象操作的起点都是调用相应的get函数来获取标识符ID,如消息队列的get函数为:

int msgget(key_t key, int oflg);

其中第一个参数是key_t类型,它其实是一个整型的变量。IPC的get函数将key转换成相应的IPC标识符。根据IPC get函数中的第二个参数oflg的不同,会有不同的控制逻辑:

在这里插入图片描述

不同进程可通过同一个key获取标识符ID,进而操作同一个System V IPC对象。那么现在问题就演变成了如何选择key。

选择key有三种方法:

  • 随机选择一个整数值作为key值
  • 使用IPC_PRIVATE,使用方法如下:
id = msgget(IPC_PRIVATE,S_IRUSR | S_IWUSR);
  • 使用ftok函数,根据文件名生成一个key。(推荐)

ftok是file to key的意思,多个进程通过同一个路径名获得相同的key值,进而得到同一个IPC标识符。

ftok函数接口的定义如下:

#include <sys/types.h>
#include <sys/ipc.h>
key_t ftok(const char *pathname, int proj_id);

这个函数在Linux上的实现是:按照给定的路径名,获取到文件的stat信息,从stat信息中取出st_dev和st_ino,然后结合给出的proj_id,按照图所示的算法获取到32位的key值。

在这里插入图片描述

System V消息队列

管道和FIFO都是字节流的模型,这种模型不存在记录边界。如果从管道里面读出100个字节,你无法确认这100个字节是单次写入的100字节,还是分10次每次10字节写入的,你也无法知晓这100个字节是几个消息。管道或FIFO里的数据如何解读,完全取决于写入进程和读取进程之间的约定。

从这个角度上讲,System V消息队列和POSIX消息队列都是优于管道和FIFO的。原因是消息队列机制中,双方是通过消息来通信的,无需花费精力从字节流中解析出完整的消息。System V消息队列比管道或FIFO优越的第二个地方在于每条消息都有type字段,消息的读取进程可以通过type字段来选择自己感兴趣的消息,也可以根据type字段来实现按消息的优先级进行读取,而不一定要按照消息生成的顺序来依次读取。

内核为每一个System V消息队列分配了一个msg_queue类型的结构体,其成员变量和各自的含义如下所示:

struct msg_queue {struct kern_ipc_perm q_perm;time_t q_stime;        /* 上一次 msgsnd的时间*/time_t q_rtime;        /* 上一次 msgrcv的时间 */time_t q_ctime;        /* 属性变化时间 */unsigned long q_cbytes;    /* 队列当前字节总数*/unsigned long q_qnum;        /*队列当前消息总数*/unsigned long q_qbytes;       /*一个消息队列允许的最大字节数*/pid_t q_lspid;            /*上一个调用msgsnd的进程ID*/pid_t q_lrpid;            /*上一个调用msgrcv的进程ID*/struct list_head q_messages;struct list_head q_receivers;struct list_head q_senders;
};

创建或打开一个消息队列

消息队列的创建或打开是由msgget函数来完成的,成功后,获得消息队列的标识符ID,函数接口定义如下:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>int msgget(key_t key, int msgflg);

当调用成功时,返回消息队列的标识符,后续的msgsnd、msgrcv和msgctl函数都通过该标识符来操作消息队列。当函数调用失败时,返回-1,并且设置相应的errno。常见的errno如表所示:

在这里插入图片描述

发送消息

获取到消息队列的标识符之后,可以通过调用msgsnd函数向队列中插入消息。内核会负责将消息维护在消息队列中,等待另外的进程来取走消息,从而完成通信的全过程。

msgsnd函数的定义如下:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>int msgsnd(int msqid, const void *msgp, size_t msgsz, int msgflg);

第一个参数msqid是由msgget返回的标识符ID。

第二个参数参数msgp指向用户定义的缓冲区。它的第一个成员必须是一个指定消息类型的long型,后面跟着消息文本的内容。通常其定义如下:

struct msgbuf {long mtype;       /*消息类型,必须大于0*/char mtext[1];    /*消息体,不一定是字符数组,可以是任意结构*/
};

事实上可以是任意结构,mtext是由程序员定义的结构,其长度和内容都是由程序员控制的,只要发送方和接收方约定好即可。比如可以将结构体定义如下:

struct private_buf {long mtype;struct pirate_info {/*定义你需要的成员变量*/} info;
};

注意两点,即要对msgsnd进行错误检测和及时释放mbuf,以防止内存泄漏。

第三个参数msgsz指定了mtext字段中包含的字节数。消息队列单条消息的大小是有上限的,,上限值为MSGMAX,记录在/proc/sys/kernel/msgmax中:

cat /proc/sys/kernel/msgmax
8192
sysctl kernel.msgmax
kernel.msgmax = 8192

如果消息的长度超过了MSGMAX,那么msgsnd函数返回-1,并置errno为EINVAL。

最后一个参数msgflg是一组标志位的位掩码,用于控制msgsnd的行为。目前只定义了IPC_NOWAIT一个标志位。

IPC_NOWAIT表示执行一个无阻塞的发送操作。当没有设置IPC_NOWAIT标志位时,如果消息队列满了,那么msgsnd函数就会陷入阻塞,直到队列有足够的空间来存放这条消息为止。但是如果设置了IPC_NOWAIT标志位,那么msgsnd函数就不会陷入阻塞了,而是立刻返回失败,并置errno为EAGAIN。

返回值和常见错误:

msgsnd函数不同于文件的write函数,write函数操作的是字节流,存在部分成功的概念,所以成功时,返回的是写入的字节个数;但是msgsnd函数操作的是封装好的消息,不成功则成仁,不存在部分成功的情况。所以其成功时,msgsnd函数返回0,失败时,msgsnd函数返回-1,并且设置errno。

在这里插入图片描述

接收消息

有发送就要有接收,没有接收者的消息是没有意义的。System V消息队列用msgrcv函数来接收消息。

size_t msgrcv(int msqid, void *msgp, size_t msgsz,long msgtyp,int msgflg);

其中前三个参数与msgsnd的含义是一致的。msgrcv调用进程也需要定义结构体,而结构体的定义要和发送端的定义一致,并且第一个字段必须是long类型。

第4个参数msgtyp是消息队列的精华,提取消息时,可以选择进程感兴趣的消息类型。正是基于这个参数,读取消息的顺序才无须和发送顺序一致,进而可以演化出很多用法。

在这里插入图片描述

  • 当msgtyp等于0时,行为模式是先入先出的模式。最先进入消息队列的消息被取出。
  • 当msgtyp小于0时,行为模式是优先级消息队列。mtype的值越低,其优先级越高,越早被取出。
  • 当msgtyp的值大于0时,会将消息队列中第一条mtype值等于msgtyp的消息取出。通过指定不同的msgtyp,多个进程可以在同一个消息队列中挑选各自感兴趣的消息。一种常见的场景是各个进程提取和自己进程ID匹配的消息。

第5个参数是可选标志位。msgrcv函数有3个可选标志位。

  • IPC_NOWAIT:如果消息队列中不存在满足msgtyp要求的消息,默认情况是阻塞等待,但是一旦设置了IPC_NOWAIT标志位,则立即返回失败,并且设置errno为ENOMSG。
  • MSG_EXCEPT:这个标志位是Linux特有的,只有当msgtyp大于0时才有意义,含义是选择mtype!=msgtyp的第一条消息。
  • MSG_NOERROR:前面也提到过,在消息体变长的情况下,可能事前并不知道消息体的大小,尽管要求maxmsgsz应尽可能地大,但是仍然存在maxmsgsz小于消息体大小的可能。如果发生这种情况,默认情况是返回错误E2BIG,但是如果设置了MSG_NOERROR标志位,情况就不同了,此时会将消息体截断并返回。

返回值:

msgrcv函数调用成功时,返回消息体的大小;失败时返回-1,并且设置errno。

System V消息队列存在一个问题,即当消息队列中有消息到来时,无法通知到某进程。消息队列的读取者进程,要么以阻塞的方式调用msgrcv函数,阻塞在消息队列上直到消息出现;要么以非阻塞(IPC_NOWAIT)的方式调用msgrcv函数,失败返回,过段时间再重试,除此以外并无好办法。阻塞或轮询,这就意味着一个进程或线程不得不无所事事,盯在该消息队列上,这给编程带来了不便。

控制消息队列

msgctl函数可以控制消息队列的属性,其接口定义如下:

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>int msgctl(int msqid, int cmd, struct msqid_ds *buf);

该函数提供的功能取决cmd字段,msgctl支持的操作如图所示:

在这里插入图片描述

1、IPC_STAT

为了获取消息队列的属性信息或设置属性,必须要有一个用户态的数据结构来描述消息队列的属性信息,这个数据结构就是msqid_ds结构体(系统自带,包含头文件即可),其大部分字段和内核的msg_queue结构体相对应。注意,msqid_ds结构体中包含下面的成员变量。在编程中,只要包含了对应的头文件,就可以直接使用该结构体。

#include <sys/msg.h>
struct msqid_ds {struct ipc_perm msg_perm;      /* Ownership and permissions */time_t          msg_stime;     /*最后一次调用msgsnd的时间*/time_t          msg_rtime;     /*最后一次调用msgrcv的时间 */time_t          msg_ctime;     /*属性发生变化的时间*/unsigned long  __msg_cbytes;   /*消息队列当前的字节总数*/msgqnum_t       msg_qnum;      /*消息队列当前消息的个数*/msglen_t        msg_qbytes;    /*消息队列允许的最大字节数*/pid_t           msg_lspid;     /*最后一次调用msgsnd的进程ID */pid_t           msg_lrpid;     /*最后一次调用msgrcv的进程ID*/
};
// 示例strutct msqid_ds buf ;        /*注意包含头文件*/
msgctl(mid,IPC_STAT,&buf);    /*省略error handle*/
// 查看消息队列当前消息的个数
printf(“current # of messages in queue is %d\n”,buf.msg_qnum);

2、IPC_SET

消息队列开放出了4个可以设置的属性。

  • msg_perm.uid
  • msg_perm.gid
  • msg_perm.mode
  • msg_qbytes

设置方法一般首先调用IPC_STAT获取到当前的设置,然后修改4个属性中的某个或某几个属性,最后调用IPC_SET,代码如下所示:

strutct msqid_ds buf ;        /*注意包含头文件*/
msgctl(mid,IPC_STAT,&buf);    /*省略error handle*/
buf.msg_qbytes = NEW_VALUE;
msgctl(mid,IPC_SET,&buf);

3、IPC_RMID

IPC_RMID命令用于删除与标识符对应的消息队列。由于IPC对象并无引用计数的机制,因此只要有权限,可以说删就删,而且是立刻就删。消息队列中的所有消息都会被清除,相关的数据结构被释放,所有阻塞的msgsnd函数和msgrcv函数会被唤醒,并返回EIDRM错误。

查看系统当前的消息队列

ipcs -q                     // 查看系统当前的消息队列
ipcrm -q <消息队列id>       // 删除消息队列id

代码示例

第二个参数是sembuf类型的指针。sembuf结构体定义在sys/sem.h头文件中。一般来说,该结构体至少包含以下三个成员变量:#include <iostream>
#include <sys/msg.h>
#include <sys/ipc.h>
#include <cstring>
#include <sys/wait.h>
#include <unistd.h>// 定义消息结构体
struct Message {long messageType;char messageText[100];
};int main()
{// 创建消息队列key_t key = ftok("/tmp", 'a'); // 生成唯一键值int msgid = msgget(key, IPC_EXCL | IPC_CREAT);int pid = fork();if (pid < 0){std::cout << "创建队列失败" << std::endl;return -1;}else if (pid == 0){for (int i = 0;i < 10;i++){// 发送消息Message msgToSend;msgToSend.messageType = 1; // 定义消息类型strcpy(msgToSend.messageText, "Hello, message queue!");msgsnd(msgid, &msgToSend, sizeof(msgToSend), 0);sleep(1);}// 发送消息Message msgToSend;msgToSend.messageType = 1; // 定义消息类型strcpy(msgToSend.messageText, "Bye!");msgsnd(msgid, &msgToSend, sizeof(msgToSend), 0);}else{while (1){// 接收消息Message msgToReceive;msgrcv(msgid, &msgToReceive, sizeof(msgToReceive), 1, 0);std::cout << "Received message: " << msgToReceive.messageText << std::endl;if (strcmp(msgToReceive.messageText, "Bye!") == 0)break;}// 删除消息队列msgctl(msgid, IPC_RMID, NULL);int status;pid_t pc = waitpid(0, &status, WNOHANG);if (pc == 0)std::cout << "此时没有子进程退出" << std::endl;else if (WIFEXITED(status))std::cout << "子进程: " << pc << "正常退出, 退出状态为" << WEXITSTATUS(status) << std::endl;elsestd::cout << "子进程: " << pc << "非正常退出" << std::endl;}return 0;
}[root@Zhn 消息队列]# g++ test.cpp -o test
[root@Zhn 消息队列]# ./test
Received message: Hello, message queue!
Received message: Hello, message queue!
Received message: Hello, message queue!
Received message: Hello, message queue!
Received message: Hello, message queue!
Received message: Hello, message queue!
Received message: Hello, message queue!
Received message: Hello, message queue!
Received message: Hello, message queue!
Received message: Hello, message queue!
Received message: Bye!
此时没有子进程退出
[root@Zhn 消息队列]# 

子进程输入十次后输入Bye!,父进程收到Bye!后执行退出,此时子进程还没有退出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/880.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

3D模型人物换装系统(五 模型核批之后模型uv不正确)模型UV不正确

3D模型人物换装系统&#xff08;五 模型核批之后模型uv不正确&#xff09;模型UV不正确 介绍展示Maya导入查看uvUnity中测试分析没合批为什么没有问题总结 介绍 最近在公司里给公司做模型优化合批的时候发现了模型的uv在合批之后无法正常展示&#xff0c;这里找了很多的原因&a…

牛客网:环形链表的约瑟夫问题

&#x1f381;个人主页&#xff1a;我们的五年 &#x1f50d;系列专栏&#xff1a;每日一练 &#x1f337;追光的人&#xff0c;终会万丈光芒 &#x1f3dd;1.问题描述&#xff1a; 前言&#xff1a; 约瑟夫问题 有很多种解决办法&#xff0c;下面我们用链表进行解题 题目链…

【H4012】3.3V5V12V24V30V,3.5A大电流温度低 高效同步降压芯片IC DC-DC

您提到的“3.3V, 5V, 12V, 24V, 30V, 3.5A 高效同步降压芯片IC DC-DC”是指一种能够将较高电压&#xff08;例如24V或30V&#xff09;降至较低电压&#xff08;例如3.3V, 5V或12V&#xff09;的直流-直流&#xff08;DC-DC&#xff09;转换器。这种转换器通常使用同步降压技术&…

Springboot项目中,异步编程底层实现原理详解(二)

本系列文章简介&#xff1a; 在现代的开发中&#xff0c;异步编程已经成为了必备的技能。随着计算机性能的提升和多核处理器的普及&#xff0c;异步编程可以充分利用系统资源&#xff0c;提高程序的性能和响应速度。在Spring Boot项目中&#xff0c;异步编程也得到了广泛的应用…

短视频流媒体平台的系统设计

1. 功能需求: 我们的系统有两类参与者 内容创作者 •上传任何类型的视频&#xff08;格式编解码器&#xff09;•视频可以被删除•视频元数据•必填项: 标题&#xff0c;作者&#xff0c;描述•选填项: 分类/标签列表•可以随时更新•当视频对观众可用时&#xff0c;向内容创作…

力扣110. 平衡二叉树

思路&#xff1a;与二叉树最大高度类似&#xff0c;但是这里需要返回 -1 的高度来标识不是平衡二叉树&#xff0c;判断左右子树的高度相差大于1则不平衡&#xff0c;否则就是平衡。 class Solution {public boolean isBalanced(TreeNode root) {int ans func(root);if(ans >…

【人工智能基础】状态空间搜索

状态空间法 状态空间&#xff1a;一个问题全部可能的状态以及其关系的集合。 状态空间图&#xff1a;以图的形式表示问题的状态空间&#xff0c;节点对应状态&#xff0c;边对应状态转移算子&#xff0c;边上的权对应转移所需的代价 问题的解&#xff1a;是从最开始状态到目…

聊聊路径规划算法(二)——图搜索法

图搜索法通过利用已有的环境地图和版图中的障碍物等数据信息建立&#xff0c;由起点至结束点的可行路线。一般分为深度最优和广度最优二种走向。深度优先算法优先拓展搜索深度较大的节点&#xff0c;因此能够更迅速的获得下一个可行路径&#xff0c;不过深度优先算法获取的第一…

Adobe Firefly是否将重新定义AI视频编辑领域?|TodayAI

Adobe最近发布了一段令人瞩目的视频&#xff0c;详细展示了其最新推出的Adobe Firefly视频模型。这一模型集成了尖端的生成式人工智能技术&#xff0c;带来了一系列颠覆性的视频编辑功能&#xff0c;引发了业界的广泛关注和讨论。 视频中的旁白充满热情地宣布&#xff1a;“Ad…

Rabbit加密算法:性能与安全的完美结合

title: Rabbit加密算法&#xff1a;性能与安全的完美结合 date: 2024/4/19 19:51:30 updated: 2024/4/19 19:51:30 tags: Rabbit加密对称加密流密码密钥调度安全分析实际应用加密算法 第一章&#xff1a;引言 1. 加密算法的基本概念和应用 加密算法是一种通过对数据进行转换…

Llama3本地部署实现模型对话

1. 从github下载目录文件 https://github.com/meta-llama/llama3 使用git下载或者直接从github项目地址下载压缩包文件 git clone https://github.com/meta-llama/llama3.git2.申请模型下载链接 到Meta Llama website填写表格申请,国家貌似得填写外国,组织随便填写即可 3.…

Linux - sed (stream editor)

替换 my.yaml 的 ‘t’ 为 ‘AAA’ sed s/t/AAA/g my.yaml sed -n /^[as]/p my.yaml 这个命令的 -n 选项表示不自动打印每一行&#xff0c;/^[as]/p 是一个 sed 命令&#xff0c;/^[as]/ 是你想要匹配的正则表达式&#xff08;所有以 a | s 开头的行&#x…

【漏洞复现】锐捷 EG易网关 phpinfo.view.php 信息泄露漏洞

0x01 产品简介 锐捷EG易网关是一款综合网关产品&#xff0c;集成了先进的软硬件体系构架&#xff0c;并配备了DPI深入分析引擎、行为分析/管理引擎。这款产品能在保证网络出口高效转发的基础上&#xff0c;提供专业的流控功能、出色的URL过滤以及本地化的日志存储/审计服务。 …

蚂蚁云科技集团正式发布以正教育大模型,专注因材施教

4月12日,蚂蚁云科技集团成功举办“智以育人、慧正无界——以正教育大模型产品发布会”,该产品致力于智慧教育变革,让因材施教成为可能。 上海科学技术交流中心科技企业服务处处长陈霖博士、中国信通院华东分院院长廖运发、上海市科协常委马慧民博士等出席并致辞;南威软件集团执…

SQL注入简单总结

一、SQL注入是什么 SQL注入即&#xff1a;是指web应用程序对用户输入数据的合法性没有判断或过滤不严&#xff0c;攻击者可以在web应用程序中事先定义好的查询语句的结尾上添加额外的SQL语句&#xff0c;在管理员不知情的情况下实现非法操作&#xff0c;以此来实现欺骗数据库服…

武汉星起航:引领跨境电商新潮流,一站式孵化助力卖家轻松出海

武汉星起航电子商务有限公司&#xff0c;作为跨境电商领域的领军者&#xff0c;始终秉持“走出去”的战略理念&#xff0c;依托自营店铺的丰富经验和对跨境电商资源的深度整合&#xff0c;成功打造了一站式卖家孵化体系。这一体系集开店策划、运营教学、资源服务于一体&#xf…

Web安全知识

第二章 虚拟机运行架构&#xff1a; 1.寄居结构 2.原生架构 软件 注&#xff1a;Hyper-V是在Windows 2008操作系统上 附录 连接FTP服务器过程&#xff1a; 1.下载了软件&#xff1a; 2.连接到ftp://10.0.105.223/服务器&#xff08;访问老师课堂资源地址&#xff09; 关闭…

视频教程如何生成二维码?扫码看操作教程视频的制作技巧

产品使用教程的视频二维码如何制作呢&#xff1f;现在商家为了能够让用户可以快速的了解产品的使用说明或者安装教程&#xff0c;会选择将录制的相关视频生成二维码之后&#xff0c;打印到包装上或者通过客服人员发送给用户&#xff0c;用手机扫描对应二维码就可以获取教程&…

Spring Cloud OpenFeign底层实现原理

Spring Cloud OpenFeign底层实现原理 先说一下写这篇文章的一个原因&#xff0c;就是我被面试官吊打了&#xff0c;我只知道OpenFeign底层采用了RestTemplate进行调用&#xff0c;采用了动态代理&#xff0c;但是具体怎么实现的我就母鸡了。为了防止同样的地方摔倒&#xff0c…

【可靠数据传输的原理】

文章目录 可靠数据传输的原理可靠数据传输&#xff08;rdt&#xff09;的原理可靠数据传输&#xff1a;问题描述Rdt1.0&#xff1a; 在可靠信道上的可靠数据传输Rdt2.0&#xff1a;具有比特差错的信道rdt2.0&#xff1a;FSM描述rdt2.0&#xff1a;没有差错时的操作rdt2.0&#…