【统计推断】-01 抽样原理之(六):三个示例

目录

  • 一、说明
  • 二、处理有限的、大尺度的母体抽样
  • 三、非参数的估计
  • 四、连续母体抽样技巧--分箱

一、说明

   对于抽样问题,前几期文章都是理论探讨。本篇给出若干示例,展现具体的情况下,面对数据,如何给出处理策略。

二、处理有限的、大尺度的母体抽样

   【问题1】一所大学有3000名男生,身高服从均值为68.8英寸,标准差为3.0英寸的正态分布。设计抽样为80组样本,每组25名学生。
问题:1)有放回抽样。2)无放回抽样。问抽样均值抽样的均值和标准差是多少?
分析:抽样分布的空间:
   在有放回抽样中,样本分布的抽样组数量是 300 0 2 5 3000^25 300025,显然数量庞大。
   在不放回抽样中,样本分布的抽样组数量是 C 3000 25 C_{3000}^{25} C300025,显然数量庞大。
   因此,大数定律成立。
   无论是有放回抽样中,还是不放回抽样中,抽样分布的样本数量远远高于80,因此,真实的的抽样分布无法获得,只能获得经验的抽样分布。
   1)对于有限母体,无放回抽样,以下公式成立
在这里插入图片描述
μ x ˉ = μ = 68.0 \mu_{\bar{x}}=\mu=68.0 μxˉ=μ=68.0
σ x ˉ = σ N = σ N N p − N N p − 1 = 3 25 3000 − 25 3000 − 1 = 0.6 \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{N}}=\frac{\sigma}{\sqrt{N}}\sqrt{\frac{N_p-N}{N_p-1}}=\frac{3}{\sqrt{25}}\sqrt{\frac{3000-25}{3000-1}}=0.6 σxˉ=N σ=N σNp1NpN =25 330001300025 =0.6
2)对于有限母体,有放回抽样,以下公式成立
μ x ˉ = μ \mu_{\bar{x}}=\mu μxˉ=μ
σ x ˉ = σ N \sigma_{\bar{x}}=\frac{\sigma}{\sqrt{N}} σxˉ=N σ
μ x ˉ = μ = 68.0 \mu_{\bar{x}}=\mu=68.0 μxˉ=μ=68.0; σ x ˉ = 4 25 = 0.6 \sigma_{\bar{x}}=\frac{4}{\sqrt{25}}=0.6 σxˉ=25 4=0.6

   结论:
   1)对于大容量的有限母体,因为抽样分布过于庞大,可以按无限母体处理。
   2)对于大容量的抽样分布,有放回和无放回抽样区别不大。
   3)上述样本均值的经验分布,可近似看成均值为68.8英寸,标准差为0,6的正态分布。

三、非参数的估计

   注意,抽样的参数估计并不是我们最后的目的,最后的目的是在样本参数估计的基础上,发掘出更多的特点。

   【问题2】在问题1中,在80个样本中,能够找到几个样本抽样,它们的特征是1)均值在66.8英寸和68.3英寸之间 2)均值小于66.4英寸。

   【分析】
   抽样分布的整体很大,因此无法穷举,因此,抽样分布也是一个估计而已。
通过上述计算,均值抽样满足 N ( 68 , 0. 6 2 ) N(68,0.6^2) N(68,0.62)的正态分布。
在这里插入图片描述
   因此,按照抽样分布中,均值抽样的样本落在【66.8,68.3】的概率是: P ( 66.8 ⩽ x ⩽ 68.3 ) P(66.8\leqslant x \leqslant 68.3) P(66.8x68.3)
   以上是个非标准的,转化成标准正态分布后,可以查表得到P;通过s=P*80可以得到满足以上所条件的抽样数s。

【解决】样本标准化,一般指向以下步骤:
z = X ˉ − μ X ˉ σ X ˉ = X ˉ − 68.0 0.6 z=\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{X}}}=\frac{\bar{X}-68.0}{0.6} z=σXˉXˉμXˉ=0.6Xˉ68.0
66.8 的标准值 = 66.8 − 68.0 0.6 = − 2 66.8的标准值=\frac{66.8-68.0}{0.6}=-2 66.8的标准值=0.666.868.0=2
68.3 的标准值 = 68.4 − 68.0 0.6 = 0.5 68.3的标准值=\frac{68.4-68.0}{0.6}=0.5 68.3的标准值=0.668.468.0=0.5
从网上随便查找一个标准正态表:
在这里插入图片描述
   P(-2, 0.5) = 0.6915 - (1-0.9772) = 0.6687
s = 80*0.6687 = 53.49
   即在80组抽样中,估计有53个均值在66.8-68.3之间。

四、连续母体抽样技巧–分箱

   在数据分析过程中,常常遇到母体是连续分布的情况;按照理论上说,抽样数据在任意区间都应该是无限的,那么如何抽样?答案是用分箱技术,所谓分箱技术,就是将连续无限集合划分成有限集合的过程。这个过程当然是近似的。
在这里插入图片描述

   下面举出一个具体示例。
   对XYZ大学的100个男生进行抽样。这里母体就是有限100;对母体进行分箱后数据如下:
在这里插入图片描述

  1. 以下是对分箱后的均值计算方法
    在这里插入图片描述
    在没有任何信息的情况,均值计算如下:
    X ˉ = 0.05 × 61 + 0.18 × 64 + 0.42 × 67 + 0.27 × 70 + 0.08 × 73 0.05 + 0.18 + 0.42 + 0.27 + 0.08 = 67.45 \bar{X}=\frac{0.05\times 61+ 0.18\times64+ 0.42\times67+0.27\times70+0.08\times73}{0.05+0.18+0.42+0.27+0.08}=67.45 Xˉ=0.05+0.18+0.42+0.27+0.080.05×61+0.18×64+0.42×67+0.27×70+0.08×73=67.45

2)在有如下抽样后,如何处理?
在这里插入图片描述
1)均值:通过【 67.75,66.25,67.75,69.25,67.0,66.25,65.5,68.5,68.5,67.0,66.25,68.5,68.5,67.75,67.0,66.25,69.25,69.25,68.5,66.25,69.25,64,67.75,69.25,66.25,67.0,70.0,68.5,68.5,65.5】输入python代码。很容易得到。

import statistics
data = [67.75,66.25,67.75,69.25,67.0,66.25,65.5,68.5,68.5,67.0,66.25,68.5,68.5,67.75,67.0,66.25,69.25,69.25,68.5,66.25,69.25,64,67.75,69.25,66.25,67.0,70.0,68.5,68.5,65.5]
mean = statistics.mean(data)
dev  = statistics.pstdev(data)

mean = 67.57

2)标准差
在这里插入图片描述
可以得到:
dev=1.40

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/7350.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

安全数据交换系统哪个好?该如何选型?

安全数据交换系统是用于在不同网络或组织之间安全、高效地传输和共享数据的解决方案。安全数据交换系统对于任何需要处理敏感数据、确保数据安全、并满足合规要求的组织来说都是至关重要的。 这种系统通常用于以下目的: 1)数据传输:允许用户…

【双曲几何-05 庞加莱模型】庞加来上半平面模型的几何属性

文章目录 一、说明二、双曲几何的上半平面模型三、距离问题四、弧长微分五、面积问题 一、说明 庞加莱圆盘模型是表示双曲几何的一种方法,对于大多数用途来说它都非常适合几何作图。然而,另一种模型,称为上半平面模型,使一些计算变…

Reactor Netty TCP 客户端-响应式编程-012

🤗 ApiHug {Postman|Swagger|Api...} = 快↑ 准√ 省↓ GitHub - apihug/apihug.com: All abou the Apihug apihug.com: 有爱,有温度,有质量,有信任ApiHug - API design Copilot - IntelliJ IDEs Plugin | Marketplace The Next Generation API Development Platform …

数据结构之栈的超详细讲解

目录 引言 一.栈的概念 二.栈的结构 三.栈的实现 栈结构的实现 栈操作函数的声明 栈中方法的实现 栈的初始化 栈的销毁 入栈 出栈 取栈顶元素 判断栈中是否为空 获取栈中数据个数 四.测试 代码展示: 结构展示: 五.小结 六.完整代码 Stack.h Stack.c text…

【管理篇】管理三步曲:管理规划(一)

目录标题 管理到底都要做哪些事呢如何开始带团队? 职能:如何界定团队是干什么的?目标:如何为团队设定合理的目标规划资源:需要申请哪些资源(1)你是否了解资源的丰富性?(2…

PSoc™62开发板之IoT应用

实验目的 使用PSoc62™开发板驱动OLED模块,实时监控室内的光照强度、温度信息 实验准备 PSoc62™开发板SSD1309 OLED模块DS18B20温度传感器BH1750光照传感器 模块电路 SSD1309 OLED模块的电路连接和模块配置教程请参考之前的文章,这里不详细展开描…

【JavaEE网络】HTTP/HTTPS协议的工作原理与格式详解

目录 HTTP/HTTPSHTTP是什么理解“应用层协议”理解HTTP协议的工作过程HTTP协议格式 HTTP/HTTPS HTTP是什么 应用层,一方面是需要自定义协议,一方面也会用到一些现成的协议 HTTP及HTTPS是应用层重点协议 使用浏览器,打开网站,这…

springboot拦载器

1、拦载器 package com.Interceptor;import com.alibaba.fastjson.JSON; import com.alibaba.fastjson.JSONObject; import org.springframework.web.servlet.HandlerInterceptor; import org.springframework.web.servlet.ModelAndView;import javax.security.auth.login.Log…

【NodeMCU实时天气时钟温湿度项目 1】连接点亮SPI-TFT屏幕和UI布局设计

前言 从今天开始,我们详解介绍制作实时天气时钟项目的方法步骤,主要分以下几个专题分别进行:(1)连接点亮SPI-TFT屏幕和UI布局设计;(2)NodeMCU的WIFI模式设置及连接;&…

一个基于ComfuUI Api的 AIGC自动绘画实现方案

工作流程图 基本原理已经弄通,下一步要开始编码搬砖了。整个自动绘画的流程如下,暂就不整高深U什么L了,写个简单明了能容易看懂的流程图。UI借用了下墨刀里的AI绘画公开原型 部署节点 整个系统的后端服务典型部署需要3类节点 Aigc Server&…

大数据Spark教程从入门到精通第三篇:Spark核心模块

一:Spark核心模块 1:概述 Spark最底层的模块是Apache Spark Core,其他的功能都是基于此实现的。 Spark SQL操作结构化数据的模块 Spark Streaming 对流式数据处理的模块。 Spark MLlib对机器学习支持的一个功能模块。学习难度很高 Spark Gra…

cmd输入mysql -u root -p无法启动

问题分析:cmd输入mysql -u root -p无法启动 解决方法:配置系统环境变量 1.找到mysql安装文件下的bin文件:(复制改文件地址,如下图所示) 2.电脑桌面下方直接搜索环境变量并进入,如下图 3.点击环境变量&a…

nginx--防盗链

盗链 通过在自己网站里面引用别人的资源链接,盗用人家的劳动和资源 referer referer是记录打开一个页面之前记录是从哪个页面跳转过来的标记信息 正常的referer信息 none:请求报文首部没有referer首部,比如用户直接在浏览器输入域名访问web网站&…

java09基础(构造方法 继承)

目录 一. 构造方法 1. 构造方法 2. 构造代码块 二. 继承 1. 基本概念 2. protected 关键字 3. 构造方法的访问特点 4. 成员变量的访问特点 5. 成员方法的访问特点 6. 向上向下转型 6.1 向上转型 6.2 向下转型 一. 构造方法 1. 构造方法 初始化一个新的对象 构建、创…

2024年03月 Scratch 图形化(四级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch图形化等级考试(1~4级)全部真题・点这里 一、单选题(共10题,共30分) 第1题 圆点角色的程序如下图1所示(角色默认方向90),运行程序,输入“HLHLHLHL”后得到的结果如下图2所示,如果想得到下图3中的结果,应该输入的字符串是?( ) A:HLLLHLLL B:LLLLLLL…

【docker 】 push 镜像提示:denied: requested access to the resource is denied

往 Docker Registry &#xff08;私服&#xff09;push 镜像提示&#xff1a;denied: requested access to the resource is denied 镜像push 语法&#xff1a;docker push <registry-host>:<registry-port>/<repository>:<tag> docker push 192.16…

C语言—控制语句

控制语句就是用来实现对流程的选择、循环、转向和返回等控制行为。 分支语句 if语句 基本结构 if(表达式) { 语句块1&#xff1b; } else { 语句块2&#xff1b; } 执行顺序&#xff1a; 如果表达式判断成立&#xff08;即表达式为真&#xff09;&#xff0c;则执行语句块…

Python量化炒股的统计数据图

Python量化炒股的统计数据图 单只股票的收益统计图 查看单只股票的收盘价信息 单击聚宽JoinQuant量化炒股平台中的“策略研究/研究环境”命令&#xff0c;进入Jupyter Notebook的研究平台。然后单击“新建”按钮&#xff0c;创建Python3文件&#xff0c;输入如下代码如下&am…

面试集中营—Spring篇

Spring 框架的好处 1、轻量&#xff1a;spring是轻量的&#xff0c;基本的版本大约2MB&#xff1b; 2、IOC&#xff1a;控制反转&#xff0c;Spring的IOC机制使得对象之间的依赖不再需要我们自己来控制了&#xff0c;而是由容易来控制&#xff0c;一个字&#xff1a;爽&#xf…

Docker——consul的容器服务更新与发现

一、什么是服务注册与发现 服务注册与发现是微服务架构中不可或缺的重要组件。起初服务都是单节点的&#xff0c;不保障高可用性&#xff0c;也不考虑服务的压力承载&#xff0c;服务之间调用单纯的通过接口访问。直到后来出现了多个节点的分布式架构&#xff0c;起初的解决手段…