单例模式
作用:单例模式的核心是保证一个类只有一个实例,并且提供一个访问实例的全局访问点。
实现方式 | 优缺点 |
---|---|
饿汉式 | 线程安全,调用效率高 ,但是不能延迟加载 |
懒汉式 | 线程安全,调用效率不高,能延迟加载 |
双重检测锁 | 在懒汉式的基础上解决并发问题 |
静态内部类 | 线程安全,资源利用率高,可以延时加载 |
枚举单例 | 线程安全,调用效率高,但是不能延迟加载 |
饿汉式
在类加载的时候立即实例化对象,实现的步骤是先私有化构造方法,对外提供唯一的静态入口方法
public class SingletonInstance1 {private byte[] b1 = new byte[1024*1024];private byte[] b2 = new byte[1024*1024];private byte[] b3 = new byte[1024*1024];// 声明此类型的变量,并实例化,当该类被加载的时候就完成了实例化并保存在了内存中private final static SingletonInstance1 instance = new SingletonInstance1();// 私有化所有的构造方法,防止直接通过new关键字实例化private SingletonInstance1(){}// 对外提供一个获取实例的静态方法public static SingletonInstance1 getInstance(){return instance;}
}
在类加载时直接创建对象可能会造成空间的浪费
–
懒汉式
public class SingletonInstance2 {// 声明此类型的变量,但没有实例化private static SingletonInstance2 instance = null;// 私有化所有的构造方法,防止直接通过new关键字实例化private SingletonInstance2(){}// 对外提供一个获取实例的静态方法public static SingletonInstance2 getInstance(){if(instance == null){// 当instance不为空的时候才实例化instance = new SingletonInstance2();}return instance;}
}
外部调用getInstance()方法时才会创建对象(判断对象是否存在),但是不能保证多线程并发的情况下的线程安全,所以就出现了双重检测锁模式
–
双重检测锁模式
public class SingletonInstance3 {// 声明此类型的变量,但没有实例化,防止指令重排private volatile static SingletonInstance3 instance;// 私有化所有的构造方法,防止直接通过new关键字实例化private SingletonInstance3(){}// 对外提供一个获取实例的静态方法public static SingletonInstance3 getInstance(){if(instance == null){synchronized (SingletonInstance3.class){if(instance == null){// 当instance不为空的时候才实例化instance = new SingletonInstance3();/*1.分配内存空间2.执行构造法法,初始化对象3.把这个对象指向这个空间如果不加volatile 会执行重排序 1 3 2*/}}}return instance;}
}
静态内部类
public class SingletonInstance4 {// 静态内部类public static class SingletonClassInstance{// 声明外部类型的静态常量public static final SingletonInstance4 instance = new SingletonInstance4();}// 私有化构造方法private SingletonInstance4(){}// 对外提供的唯一获取实例的方法public static SingletonInstance4 getInstance(){return SingletonClassInstance.instance;}
}
枚举
public enum EnumSingle {INSTANCE;public EnumSingle getInstance(){return INSTANCE;}
}
–
如何保证线程安全
推荐使用 静态内部类 或者 双重检测锁 配合volatile
使用
–
反射破坏单例模式
代码如下
import java.lang.reflect.Constructor;
import java.lang.reflect.InvocationTargetException;public class LazyMan {private static boolean jiamibiaozhi = false; // 加密标志位// 私有化所有的构造方法,防止直接通过new关键字实例化private LazyMan(){synchronized (LazyMan.class){if(!jiamibiaozhi){ // 防止反射破坏单例jiamibiaozhi = true;}else {throw new RuntimeException("不能试图使用反射破坏异常");}}System.out.println(Thread.currentThread().getName() +"LazyMan");}// 声明此类型的变量,但没有实例化, volatile防止指令重排private volatile static LazyMan instance;// 对外提供一个获取实例的静态方法public static LazyMan getInstance(){if(instance == null){synchronized (LazyMan.class){if(instance == null){// 当instance不为空的时候才实例化instance = new LazyMan();/*1.分配内存空间2.执行构造法法,初始化对象3.把这个对象指向这个空间如果不加volatile 会执行重排序 1 3 2*/}}}return instance;}// 反射破环单列public static void main(String[] args) throws NoSuchMethodException, InvocationTargetException, InstantiationException, IllegalAccessException {// LazyMan lazyMan = LazyMan.getInstance();Constructor<LazyMan> declaredConstructor = LazyMan.class.getDeclaredConstructor(null); // 获取空参构造器declaredConstructor.setAccessible(true); // 暴力反射,设置权限,无视私有构造器LazyMan lazyMan1 = declaredConstructor.newInstance(); // 通过空参构造器创建对象LazyMan lazyMan2 = declaredConstructor.newInstance();System.out.println(lazyMan1);System.out.println(lazyMan2);}
}
反射不能破坏枚举,见源码