Python基于YOLOv8和OpenCV实现车道线和车辆检测

使用YOLOv8(You Only Look Once)和OpenCV实现车道线和车辆检测,目标是创建一个可以检测道路上的车道并识别车辆的系统,并估计它们与摄像头的距离。该项目结合了计算机视觉技术和深度学习物体检测。

1、系统主要功能

  • 车道检测:使用边缘检测和霍夫线变换检测道路车道。
  • 汽车检测:使用 YOLOv8 模型识别汽车并在汽车周围绘制边界框。
  • 距离估计:使用边界框大小计算检测到的汽车与摄像头的距离。

2、环境要求

  • OpenCV:用于图像处理和车道检测。
  • Ultralytics YOLOv8:用于车辆检测。
  • NumPy:用于数组操作。
pip install opencv-python-headless numpy ultralytics

opencv-pythonopencv-python-headless 区别是 OpenCV 的 Python 包,主要区别在于是否包含 GUI 相关的功能。

opencv-python
  • 包含 GUI 功能:支持窗口显示、鼠标事件等图形界面操作。
  • 依赖:需要 GUI 库(如 GTK、Qt)支持。
  • 适用场景:适用于需要显示图像或与用户交互的环境,如桌面应用。
opencv-python-headless
  • 不包含 GUI 功能:去除了窗口显示和用户交互功能。
  • 依赖:无需 GUI 库,适合无图形界面的环境。
  • 适用场景:适用于服务器或无图形界面的环境,如远程服务器、Docker 容器。
选择建议
  • 如果需要显示图像或与用户交互,选择 opencv-python
  • 如果仅需图像处理且无图形界面需求,选择 opencv-python-headless

3、代码

import cv2
import numpy as np
import math
import time
from ultralytics import YOLO  # YOLOv8 module# Function to mask out the region of interest
def region_of_interest(img, vertices):mask = np.zeros_like(img)match_mask_color = 255cv2.fillPoly(mask, vertices, match_mask_color)masked_image = cv2.bitwise_and(img, mask)return masked_image# Function to draw the filled polygon between the lane lines
def draw_lane_lines(img, left_line, right_line, color=[0, 255, 0], thickness=10):line_img = np.zeros_like(img)poly_pts = np.array([[(left_line[0], left_line[1]),(left_line[2], left_line[3]),(right_line[2], right_line[3]),(right_line[0], right_line[1])]], dtype=np.int32)# Fill the polygon between the linescv2.fillPoly(line_img, poly_pts, color)# Overlay the polygon onto the original imageimg = cv2.addWeighted(img, 0.8, line_img, 0.5, 0.0)return img# The lane detection pipeline
def pipeline(image):height = image.shape[0]width = image.shape[1]region_of_interest_vertices = [(0, height),(width / 2, height / 2),(width, height),]# Convert to grayscale and apply Canny edge detectiongray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)cannyed_image = cv2.Canny(gray_image, 100, 200)# Mask out the region of interestcropped_image = region_of_interest(cannyed_image,np.array([region_of_interest_vertices], np.int32))# Perform Hough Line Transformation to detect lineslines = cv2.HoughLinesP(cropped_image,rho=6,theta=np.pi / 60,threshold=160,lines=np.array([]),minLineLength=40,maxLineGap=25)# Separating left and right lines based on slopeleft_line_x = []left_line_y = []right_line_x = []right_line_y = []if lines is None:return imagefor line in lines:for x1, y1, x2, y2 in line:slope = (y2 - y1) / (x2 - x1) if (x2 - x1) != 0 else 0if math.fabs(slope) < 0.5:  # Ignore nearly horizontal linescontinueif slope <= 0:  # Left laneleft_line_x.extend([x1, x2])left_line_y.extend([y1, y2])else:  # Right laneright_line_x.extend([x1, x2])right_line_y.extend([y1, y2])# Fit a linear polynomial to the left and right linesmin_y = int(image.shape[0] * (3 / 5))  # Slightly below the middle of the imagemax_y = image.shape[0]  # Bottom of the imageif left_line_x and left_line_y:poly_left = np.poly1d(np.polyfit(left_line_y, left_line_x, deg=1))left_x_start = int(poly_left(max_y))left_x_end = int(poly_left(min_y))else:left_x_start, left_x_end = 0, 0  # Defaults if no lines detectedif right_line_x and right_line_y:poly_right = np.poly1d(np.polyfit(right_line_y, right_line_x, deg=1))right_x_start = int(poly_right(max_y))right_x_end = int(poly_right(min_y))else:right_x_start, right_x_end = 0, 0  # Defaults if no lines detected# Create the filled polygon between the left and right lane lineslane_image = draw_lane_lines(image,[left_x_start, max_y, left_x_end, min_y],[right_x_start, max_y, right_x_end, min_y])return lane_image# Function to estimate distance based on bounding box size
def estimate_distance(bbox_width, bbox_height):# For simplicity, assume the distance is inversely proportional to the box size# This is a basic estimation, you may use camera calibration for more accuracyfocal_length = 1000  # Example focal length, modify based on camera setupknown_width = 2.0  # Approximate width of the car (in meters)distance = (known_width * focal_length) / bbox_width  # Basic distance estimationreturn distance# Main function to read and process video with YOLOv8
def process_video():# Load the YOLOv8 modelmodel = YOLO('weights/yolov8n.pt')# 或者加载官方模型# model = YOLO("yolov8n.pt")  # load an official model# Open the video filecap = cv2.VideoCapture('video/video.mp4')# Check if video opened successfullyif not cap.isOpened():print("Error: Unable to open video file.")return# Set the desired frame ratetarget_fps = 30frame_time = 1.0 / target_fps  # Time per frame to maintain 30fps# Resize to 720p (1280x720)cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)# Loop through each framewhile cap.isOpened():ret, frame = cap.read()if not ret:break# Resize frame to 720presized_frame = cv2.resize(frame, (1280, 720))# Run the lane detection pipelinelane_frame = pipeline(resized_frame)# Run YOLOv8 to detect cars in the current frameresults = model(resized_frame)# Process the detections from YOLOv8for result in results:boxes = result.boxesfor box in boxes:x1, y1, x2, y2 = map(int, box.xyxy[0])  # Bounding box coordinatesconf = box.conf[0]  # Confidence scorecls = int(box.cls[0])  # Class ID# Only draw bounding boxes for cars with confidence >= 0.5if model.names[cls] == 'car' and conf >= 0.5:label = f'{model.names[cls]} {conf:.2f}'# Draw the bounding boxcv2.rectangle(lane_frame, (x1, y1), (x2, y2), (0, 255, 255), 2)cv2.putText(lane_frame, label, (x1, y1 - 10),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 2)# Estimate the distance of the carbbox_width = x2 - x1bbox_height = y2 - y1distance = estimate_distance(bbox_width, bbox_height)# Display the estimated distancedistance_label = f'Distance: {distance:.2f}m'cv2.putText(lane_frame, distance_label, (x1, y2 + 20),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)# Display the resulting frame with both lane detection and car detectioncv2.imshow('Lane and Car Detection', lane_frame)# Limit the frame rate to 30fpstime.sleep(frame_time)# Break the loop when 'q' is pressedif cv2.waitKey(1) & 0xFF == ord('q'):break# Release video capture and close windowscap.release()cv2.destroyAllWindows()# Run the video processing function
process_video()

4、工作原理

4.1 车道线检测 Pipeline

车道线检测包括一下几个步骤:

Step 1: 屏蔽感兴趣区域(ROI)
只处理图像的下半部分(车道线通常是可见的)。

def region_of_interest(img, vertices):mask = np.zeros_like(img)match_mask_color = 255cv2.fillPoly(mask, vertices, match_mask_color)masked_image = cv2.bitwise_and(img, mask)return masked_image

Step 2: 使用Canny进行边缘检测
将图像转换为灰度,并应用Canny边缘检测来突出显示边缘。

gray_image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
cannyed_image = cv2.Canny(gray_image, 100, 200)

Step 3: 霍夫线变换
霍夫线变换用于检测当前车道的线段。

lines = cv2.HoughLinesP(cropped_image,rho=6,theta=np.pi / 60,threshold=160,lines=np.array([]),minLineLength=40,maxLineGap=25
)

4.2 使用YOLOv8进行车辆检测

Step 1: 加载YOLOv8模型
我们使用预训练的YOLOv8模型来检测每一帧中的汽车(或者使用官方提供的模型)。

from ultralytics import YOLO
model = YOLO('weights/yolov8n.pt')
# model = YOLO('yolov8n.pt') #官方提供的模型

Step 2: 绘制边界框
对于每一辆检测到的汽车,绘制边界框,并显示类名(汽车)和置信度分数。

for box in boxes:x1, y1, x2, y2 = map(int, box.xyxy[0])conf = box.conf[0]if model.names[cls] == 'car' and conf >= 0.5:label = f'{model.names[cls]} {conf:.2f}'cv2.rectangle(lane_frame, (x1, y1), (x2, y2), (0, 255, 255), 2)cv2.putText(lane_frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 255), 2)

Step 3:. 距离估计
根据边界框的大小估计到每辆检测到的汽车的距离。

def estimate_distance(bbox_width, bbox_height):focal_length = 1000  # Example focal lengthknown_width = 2.0  # Approximate width of a car (in meters)distance = (known_width * focal_length) / bbox_widthreturn distance

Step 4:. 视频处理 Pipeline
将车道检测、车辆检测和距离估计结合到一个实时视频处理pipeline中。

while cap.isOpened():ret, frame = cap.read()if not ret:breaklane_frame = pipeline(resized_frame)results = model(resized_frame)for result in results:# Draw bounding boxes and estimate distancecv2.imshow('Lane and Car Detection', lane_frame)if cv2.waitKey(1) & 0xFF == ord('q'):break

5、结果

在这里插入图片描述

  • 项目源码地址: https://github.com/CityIsBetter/Lane_Detection

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/66677.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

黑马跟学.苍穹外卖.Day04

黑马跟学.苍穹外卖.Day04 苍穹外卖-day04课程内容1. Redis入门1.1 Redis简介1.2 Redis下载与安装1.2.1 Redis下载1.2.2 Redis安装 1.3 Redis服务启动与停止1.3.1 服务启动命令1.3.2 客户端连接命令1.3.3 修改Redis配置文件1.3.4 Redis客户端图形工具 2. Redis数据类型2.1 五种常…

SOLID原则学习,开闭原则

文章目录 1. 定义2. 开闭原则的详细解释3. 实现开闭原则的方法4. 总结 1. 定义 开闭原则&#xff08;Open-Closed Principle&#xff0c;OCP&#xff09;是面向对象设计中的五大原则&#xff08;SOLID&#xff09;之一&#xff0c;由Bertrand Meyer提出。开闭原则的核心思想是…

filebeat、kafka

elk的架构 es数据库&#xff1a;非关系型数据库&#xff0c;json格式 logstash&#xff1a;收集日志 kibana&#xff1a;图形化的工具 ↓ 以上三种结合起来即为日志收集系统 filebeat 作用&#xff1a;filebeat是一款轻量级的日志收集工具&#xff0c;不依赖java环境&…

Qt重写webrtc的demo peerconnection

整个demo为&#xff1a; 可以选择多个编码方式&#xff1a; cmake_minimum_required(VERSION 3.5)project(untitled LANGUAGES CXX) set(CMAKE_CXX_STANDARD 20) set(CMAKE_INCLUDE_CURRENT_DIR ON)set(CMAKE_AUTOUIC ON) set(CMAKE_AUTOMOC ON) set(CMAKE_AUTORCC ON)set(CMA…

【Notepad++】Notepad++如何删除包含某个字符串所在的行

Notepad如何删除包含某个字符串所在的行 一&#xff0c;简介二&#xff0c;操作方法三&#xff0c;总结 一&#xff0c;简介 在使用beyoundcompare软件进行对比的时候&#xff0c;常常会出现一些无关紧要的地方&#xff0c;且所在行的内容是变化的&#xff0c;不方便进行比较&…

python无需验证码免登录12306抢票 --selenium(2)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 [TOC](python无需验证码免登录12306抢票 --selenium(2)) 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; 就在刚刚我抢的票&#xff1a;2025年1月8日…

CSS 盒模型

盒模型 CSS盒模型是网页布局的核心概念之一&#xff0c;它描述了网页元素的物理结构和元素内容与周围元素之间的关系。根据W3C规范&#xff0c;每个HTML元素都被视为一个矩形盒子&#xff0c;这个盒子由以下四个部分组成&#xff1a; 内容区&#xff08;Content area&#xff…

WPF的自定义控件控件学习

引入自定义控件 <controls:Intellibox Style"{StaticResource ListSearch-SearchIntellibox}" Width"95" Margin"0,3" MaxResults"200" …

【含开题报告+文档+PPT+源码】基于springboot的农贸菜市场租位管理系统的设计与实现

开题报告 随着信息技术的快速发展和普及&#xff0c;信息化管理已成为各行业提升运营效率和服质量的重要手段。农贸菜市场作为城市生活的重要组成部分&#xff0c;其管理效率和服务水平直接关系到市民的日常生活体验。传统的农贸菜市场租位管理方式往往存在信息不对称、管理效…

华为路由器、交换机、AC、新版本开局远程登录那些坑(Telnet、SSH/HTTP避坑指南)

关于华为设备远程登录配置开启的通用习惯1、HTTP/HTTPS相关服务 http secure-server enablehttp server enable 2、Telnet服务telnet server enable3、SSH服务stelnet server enablessh user admin authentication-type password 「模拟器、工具合集」复制整段内容 链接&…

【论文阅读-思维链的构造方法02】4.1.2 Automatic Construction-02

提示1&#xff1a;本篇博客中涉及4篇相关论文&#xff0c;预计阅读时间10分钟&#xff0c;望各位友友耐心阅读&#xff5e; 提示2&#xff1a;本篇所有涉及的论文已打包发布&#xff0c;不需要任何积分即可下载&#xff0c;指路 --> 论文集下载地址 大模型技术-思维链CoT …

【GIt原理与使用】Git远程仓库

一、理解分布式版本控制系统 我们目前所说的所有内容&#xff08;工作区&#xff0c;暂存区&#xff0c;版本库等等&#xff09;&#xff0c;都是在本地&#xff01;也就是在你的笔记本或者计算机上。而我们的 Git 其实是分布式版本控制系统&#xff01;什么意思呢&#xff1f…

力扣-数组-88 合并两个有序数组

解析 分别维护指向两个数组的指针&#xff0c;不断往后增加指针即可&#xff0c;主要是边界&#xff0c;然后时间复杂度是。 代码 class Solution { public:void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {vector <int> new…

家用万兆网络实践:紧凑型家用服务器静音化改造(二)

大家好&#xff0c;这篇文章我们继续分享家里网络设备的万兆升级和静音改造经验&#xff0c;希望对有类似需求的朋友有所帮助。 写在前面 在上一篇《家用网络升级实践&#xff1a;低成本实现局部万兆&#xff08;一&#xff09;》中&#xff0c;我们留下了一些待解决的问题。…

小程序组件 —— 29 组件案例 - 字体图标的使用

这一节主要是完善公司信息区域&#xff0c;我们需要在文本之前添加一些字体图标&#xff0c;这一节我们学习如何在微信小程序中使用字体图标&#xff1b; 在项目中&#xff0c;我们使用的小图标&#xff0c;一般由公司设计师进行设计&#xff0c;设计好之后上传到阿里巴巴矢量…

RK3562编译Android13 ROOT固件教程,触觉智能开发板演示

本文介绍编译Android13 ROOT权限固件的方法&#xff0c;触觉智能RK3562开发板演示&#xff0c;搭载4核A53处理器&#xff0c;主频高达2.0GHz&#xff1b;内置独立1Tops算力NPU&#xff0c;可应用于物联网网关、平板电脑、智能家居、教育电子、工业显示与控制等行业。 关闭seli…

STM32-ADC模数转换

目录 1.0 逐次逼近型ADC 2.0 ADC触发 3.0 ADC时钟 4.0 转换模式 5.0 转换时间 6.0 校准 7.0 硬件电路 8.0 数据手册 9.0 程序实现 9.0.1 时钟初始化 9.0.2 GPIO结构体初始化 9.0.3 ADC结构体初始化 9.0.4 ADC转换 9.0.5 AD初始化 9.0.6 获取ADC值 9.0.7 ADC头文…

数据结构:LinkedList与链表—面试题(三)

目录 1、移除链表元素 2、反转链表 3、链表的中间结点 4、返回倒数第k个结点 5、合并两个有序链表 1、移除链表元素 习题链接https://leetcode.cn/problems/remove-linked-list-elements/description/ 描述&#xff1a;给你一个链表的头节点 head 和一个整数 val &#xff…

使用 SQL 和表格数据进行问答和 RAG(1)—数据库准备

一. 从 .sql/csv/xlsx 文件创建 sqlite 数据库。 要从.sql文件准备 SQL DB&#xff0c;这里会将创建数据库的代码放到了&#xff0c;将文件复制到data/sql目录中&#xff0c;然后在终端中的项目文件夹中执行&#xff1a; pip install sqlite3现在创建一个名为sqldb的数据库&a…

案例研究:UML用例图中的结账系统

在软件工程和系统分析中&#xff0c;统一建模语言&#xff08;UML&#xff09;用例图是一种强有力的工具&#xff0c;用于描述系统与其用户之间的交互。本文将通过一个具体的案例研究&#xff0c;详细解释UML用例图的关键概念&#xff0c;并说明其在设计结账系统中的应用。 用…