2021 数学分析
-
求极限
lim n → ∞ 1 n ( n + 1 ) ( n + 2 ) ⋯ ( n + n ) n \lim_{n \to \infty} \frac{1}{n} \sqrt [n]{(n+1)(n+2) \cdots (n+n)} n→∞limn1n(n+1)(n+2)⋯(n+n)
lim n → ∞ 1 n ( n + 1 ) ( n + 2 ) ⋯ ( n + n ) n = lim n → ∞ ( n + 1 ) ( n + 2 ) ⋯ ( n + n ) n m n = lim n → ∞ e 1 n ∑ k = 1 n ln ( 1 + k n ) = e ∫ 0 1 ln ( 1 + x ) d x = e 2 l n 2 − 1 \begin{align*} \mathop {\lim }\limits_{n \to \infty } \frac{1}{n} \sqrt [n]{{(n + 1)(n + 2) \cdots (n + n)}} &= \mathop {\lim }\limits_{n \to \infty } \sqrt [n]{{\frac{{(n + 1)(n + 2) \cdots (n + n)}}{{n^m}}}} \\ &= \mathop {\lim }\limits_{n \to \infty } e^{\frac{1}{n} \sum\limits_{k = 1}^n \ln\left( 1 + \frac{k}{n} \right)} \\ &= e^{\int_0^1 \ln\left( 1 + x \right) dx} \\ &= e^{2ln2-1} \\ \end{align*} n→∞limn1n(n+1)(n+2)⋯(n+n)=n→∞limnnm(n+1)(n+2)⋯(n+n)=n→∞limen1k=1∑nln(1+nk)=e∫01ln(1+x)dx=e2ln2−1
-
求 a , b a, b a,b 的值,使得
lim x → 0 1 b x − sin x ∫ 0 x t 2 a + t 2 d t = 1. \lim_{x \to 0} \frac{1}{bx - \sin x} \int_0^x \frac{t^2}{\sqrt{a + t^2}} \, dt = 1. x→0limbx−sinx1∫0xa+t2t2dt=1.
lim x → 0 ∫ 0 x t 2 a + t 2 d t b x − sin x = lim x → 0 x 2 ( b − cos x ) a + x 2 = lim x → 0 x 2 ( b − 1 + 1 2 x 2 + o ( x 2 ) ) ( a + 1 2 a x 2 + o ( x 2 ) ) = lim x → 0 x 2 ( ( b − 1 ) a + 1 2 ( a + b − 1 a ) x 2 + o ( x 2 ) ) = 1 \begin{aligned} \mathop{\lim}\limits_{x \to 0} \frac{\int_0^x \frac{t^2}{\sqrt{a + t^2}} \, dt}{bx - \sin x} &= \mathop{\lim}\limits_{x \to 0} \frac{x^2}{\left( b - \cos x \right) \sqrt{a + x^2}} \\ &= \mathop{\lim}\limits_{x \to 0} \frac{x^2}{\left( b - 1 + \frac{1}{2}x^2 + o(x^2) \right)\left( \sqrt{a} + \frac{1}{2\sqrt{a}}x^2 + o(x^2) \right)} \\ &= \mathop{\lim}\limits_{x \to 0} \frac{x^2}{\left( \left( b - 1 \right)\sqrt{a} + \frac{1}{2}\left( \sqrt{a} + \frac{b - 1}{\sqrt{a}} \right)x^2 + o(x^2) \right)} \\ &= 1 \end{aligned} x→0limbx−sinx∫0xa+t2t2dt=x→0lim(b−cosx)a+x2x2=x→0lim(b−1+21x2+o(x2))(a+2a1x2+o(x2))x2=x→0lim((b−1)a+21(a+ab−1)x2+o(x2))x2=1
当 a ≠ 0 a\ne0 a=0
解得 ( b − 1 ) a = 0 (b-1)\sqrt{a}=0 (b−1)a=0 ,且 1 2 ( a + b − 1 a ) = 1 \frac{1}{2}\left( \sqrt{a} + \frac{b - 1}{\sqrt{a}} \right)=1 21(a+ab−1)=1
故 b = 1 b=1 b=1, a = 4 a=4 a=4
当 a = 0 a=0 a=0,极限不成立
- 用定义法证明 y = x 2 y = x^2 y=x2 在 ( − 1 , 2 ) (-1, 2) (−1,2) 上一致连续,在 ( 0 , + ∞ ) (0, +\infty) (0,+∞) 上不一致连续。
任取 x 1 , x 2 ∈ ( − 1 , 2 ) x_1,x_2 \in(-1,2) x1,x2∈(−1,2),要使不等式
∣ x 2 2 − x 1 2 ∣ = ∣ x 2 − x 1 ∣ ∣ x 2 + x 1 ∣ ≤ 4 ∣ x 2 − x 1 ∣ < ε \left| x_2^2 - x_1^2 \right| = \left| x_2 - x_1 \right| \left| x_2 + x_1 \right| \leq 4\left| x_2 - x_1 \right| < \varepsilon x22−x12 =∣x2−x1∣∣x2+x1∣≤4∣x2−x1∣<ε
成立,解得 ∣ x 2 − x 1 ∣ < ε 4 \left| x_2 - x_1 \right| < \frac{\varepsilon}{4} ∣x2−x1∣<4ε,取 δ 1 = ε 4 \delta_1= \frac{\varepsilon}{4} δ1=4ε
则 ∀ x 1 , x 2 ∈ ( − 1 , 2 ) \forall x_1,x_2 \in(-1,2) ∀x1,x2∈(−1,2),当 ∣ x 2 − x 1 ∣ < δ 1 \left| x_2 - x_1 \right| <\delta_1 ∣x2−x1∣<δ1,有 ∣ x 2 2 − x 1 2 ∣ < ε \left| x_2^2 - x_1^2 \right| < \varepsilon x22−x12 <ε,故在 ( − 1 , 2 ) (-1, 2) (−1,2) 上一致连续
取 x n = n x_n=\sqrt n xn=n, y n = n + 1 y_n=\sqrt {n+1} yn=n+1
lim n → ∞ ( y n − x n ) = lim n → ∞ ( n + 1 − n ) = lim n → ∞ 1 n + 1 + n = 0 \begin{aligned} \mathop{\lim}\limits_{n \to \infty} (y_n - x_n) &= \mathop{\lim}\limits_{n \to \infty} \left( \sqrt{n+1} - \sqrt{n} \right) \\ &= \mathop{\lim}\limits_{n \to \infty} \frac{1}{\sqrt{n+1} + \sqrt{n}} \\ &= 0 \end{aligned} n→∞lim(y