【大模型】LLaMA-Factory的环境配置、微调模型与测试

前言


【一些闲扯】
时常和朋友闲聊,时代发展这么快,在时代的洪流下,我们个人能抓住些什么呢。我问了大模型,文心一言是这样回答的:

  • 在快速发展的时代背景下,个人确实面临着诸多挑战,但同时也充满了机遇。尽管时代洪流滚滚向前,我们依然可以抓住一些关键要素,以实现个人成长和价值提升…(一些建议)… 记住,每个人的成长路径都是独一无二的,找到适合自己的方式并坚持下去才是最重要的。

哈哈跟没回答一样,毕竟是一个开放命题,还是要落到个人的行动上的。


先动起来吧,我的大模型的记录终于开始了。接下来将会做的事情:

  1. 将transfomer、GPT系列、Bert等论文进行下论文阅读、解析记录。
  2. 大模型相关的框架、库的使用,工程相关的知识体系。
  3. 高star的开源工程的环境配置与运行。

自主了解和记录会按照上面的顺序。而实际执行时受项目需要,顺序会换一换。


【日常常用大模型】
另外,自己日常工作中,常用的大模型有通义千问、文心一言、Kimi。以下的纯个人使用感受:

  • 通义千问:在提问技术问题时,会直接对问题展开解释和解决办法、或者实现对应的代码片段,其变量命名很精准。在代码类问题上使用感受较好。个人最常用。
  • 文心一言:提问技术问题时,总觉得会有前摇,当然回答得核心问题也是OK的。对非技术的问题的回答,用词更丰富些。
  • Kimi:最大的好处是会联网搜索当下新的技术知识。另外对文档内容的提取能力很优秀。

个人在界面上比较倾向通义千问。
在实际使用上,需要编写文档和生动的文词,使用文心一言;问代码工程类问题,选择通义千问;当通义千问回答不出来时候,就找Kimi了。当然无论哪个模型回答的代码或文本,是要抱有怀疑值,是要阅读和验证的,因为有时大模型真的会一本正经的乱说。


【大模型问答示例】

  • 文心一言
    在这里插入图片描述
  • 通义千问
    在这里插入图片描述在这里插入图片描述
  • Kimi
    在这里插入图片描述

OK,前面讲了一堆,接下来进入正题:大模型的微调工程-——LLaMA-Factory。

1 工程介绍

  • 作者: LLaMa Factory 的团队负责人是郑耀威,北京航空航天大学的博士生。
  • 论文链接:http://arxiv.org/pdf/2403.13372
  • github链接:https://github.com/hiyouga/LLaMA-Factory
  • 具体功能:LLaMA-Factory是一个开源的大型语言模型(LLM)微调框架,旨在帮助开发者高效地微调和部署大型语言模型。
  • 项目结构:LLaMA-Factory 的项目结构通常包括以下几个部分:
    • 模型库:包含支持的预训练模型。
      微调方法:包含不同的微调技术实现。
      数据集:提供或支持多种数据集,用于微调。
      训练和评估:提供训练和评估模型的脚本和工具。
      推理接口:提供模型推理的接口和工具。

在这里插入图片描述

2 环境配置

2.1 硬件与环境

  • 显卡型号:建议不低于3090,显存尽量24G+。这样可以训练比较主流的入门级别大模型 7B左右的版本。
    在这里插入图片描述
  • CUDA版本,推荐使用12.2。查看自己的设备中的cuda版本的命令 nvidia-smi
    在这里插入图片描述

2.2 运行环境配置

  • 终端键入如下命令
    ## 创建虚拟环境
    conda create -n llama_factory python=3.11 -c conda-forge
    ## 激活虚拟环境
    conda activate llama_factory
    ## 环境安装
    pip install -e ".[torch,metrics]"
    ## 这里我从modelscope下载模型,所以要进行库的安装
    pip install modelscope -U
    
  • 环境安装结束后,查看版本信息
    llamafactory-cli version
    

在这里插入图片描述

  • 查看gpu是否能被调用起来
    python -c "import torch; print(torch.__version__); print(torch.cuda.is_available())"
    

在这里插入图片描述
上面的内容都正确运行结束后,说明环境配置已经完成。

3 LLaMa Factory 微调模型(使用web方式)

3.1 界面开启

  1. 设置使用modelscope下载模型,终端键入内容如下。也可在工程中 .env.local 文件中设置。
    export USE_MODELSCOPE_HUB=1
    
  2. 下载的大模型,一般都是几个G左右,所以下载的路径尽量不要放在系统盘,优先选择挂载的数据盘。所以就需要设置下对应的路径,终端键入内容如下,后面的路径根据自己实际情况更换。
    export MODELSCOPE_CACHE="/opt/ai-platform/lldataset/240/modelscope/"
    export MODELSCOPE_MODULES_CACHE="/opt/ai-platform/lldataset/240/modelscope/modelscope_modules"
    
  3. 开启web界面
    llamafactory-cli webui
    

方便起见,上面的命令可以写在一个bash文件中。具体的,在根目录创建个 run_with_webui.sh,里面的内容为如下。当然也可以将其配置的系统环境变量当中,这里使用临时方式。

export USE_MODELSCOPE_HUB=1 # 使用 modelscope 下载模型 
export MODELSCOPE_CACHE="/opt/ai-platform/lldataset/240/modelscope/"
export MODELSCOPE_MODULES_CACHE="/opt/ai-platform/lldataset/240/modelscope/modelscope_modules"llamafactory-cli webui

运行结束后,在浏览器的http://localhost:7860/中可以打开大模型训练界面。WebUI 主要分为四个界面:训练、评估与预测、对话、导出。


3.2 模型微调训练

在开始训练模型之前,需要指定的参数有:

  1. 模型名称及路径
  2. 微调方法
  3. 训练数据集
  4. 学习率、训练轮数等训练参数
  5. 微调参数等其他参数
  6. 输出目录及配置路径

尝试如下图,设置好后开启训练。
若需要量化,在【量化等级】中,选择对应的数值即可,量化会带来精度损失,但显存占用会降低。
在这里插入图片描述在这里插入图片描述
第一次调用会耗费些时间,下载模型和数据(可在终端的打印的信息查看进度)。
运行时可能会报错:

  • 若存在库缺失,pip安装即可;
  • 可能报错,说modelscope和datasets的库不兼容,安装兼容版本即可。个人使用可运行版本如下
    在这里插入图片描述
    训练结束后界面显示如下:
    在这里插入图片描述

3.3 微调模型的测试效果

为了对比基座模型和微调模型的差异,在【Chat】界面,分别调用基座模型和微调模型的进行问答,问题来源于训练时使用的数据集。训练时的数据内容如下:
在这里插入图片描述

  1. 使用基座模型进行问答:
    在这里插入图片描述
    加载模型后,在界面的最下端输入要问的问题。基座模型回答如下
    在这里插入图片描述
  2. 微调模型进行问答:
    注意:要先进行【卸载模型】,否则显存没有释放,剩余显存可能无法加载新的模型。
    在这里插入图片描述
    微调模型回答如下,发现回答内容与数据集中的答案并不相符。
    分析原因,应该是初始学习率偏小,然后学习的轮次也偏少,导致微调模型欠拟合。
    在这里插入图片描述
  3. 接下来就是根据经验调参,可以再尝试下,学习率修改为5e-4,epoch为6。

3.4 微调模型的合并与导出

  1. 先在【Chat】将要导出的微调模型 进行加载
    在这里插入图片描述
  2. 先在【Export】设置好导出路径,开始导出
    在这里插入图片描述

4 LLaMa Factory 微调模型(源码方式)


4.1 运行命令

依然选择modelscope来下载模型。工程根目录创建 run_with_command.sh。里面的内容编辑如下:

export USE_MODELSCOPE_HUB=1 # 使用 modelscope 下载模型 
export MODELSCOPE_CACHE="/opt/ai-platform/lldataset/240/modelscope/"
export MODELSCOPE_MODULES_CACHE="/opt/ai-platform/lldataset/240/modelscope/modelscope_modules"llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml

运行后,若模型能正常下载则继续训。但模型下载可能存在异常。


4.2 模型的下载问题

我这里报错,基座模型路径不存在。
在这里插入图片描述
于是,使用直接去 modelscope上获取对应模型下载命令。方法如下:

  • 登录网址:https://www.modelscope.cn/my/overview

  • 搜索所需模型:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 选择使用 modelscope download --model ***命令进行下载。想要将模型下载到指定路径,则跟一个参数即可,最终命令如下

    modelscope download --model LLM-Research/Meta-Llama-3-8B-Instruct \--local_dir /opt/ai-platform/lldataset/240/modelscope/hub/meta-llama/Meta-Llama-3-8B-Instruct
    

    然后等下载结束即可
    在这里插入图片描述

  • 【配置文件的修改】
    对应的要进行配置文件的修改。训练时调用的是 examples/train_lora/llama3_lora_sft.yaml,文件内需要修改个配置 model_name_or_path为上一步下载的模型路径;另外这里修改了训练的数据集为中文的数据集。

    ### model 
    # 指定了要使用的预训练模型名字或路径。这里使用的是 meta-llama/Meta-Llama-3-8B-Instruct,这是一个经过指令调优的 8B 参数的 LLaMA 模型。
    # model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
    model_name_or_path: /opt/ai-platform/lldataset/240/modelscope/hub/meta-llama/Meta-Llama-3-8B-Instruct### method
    stage: sft             # 指定了微调的阶段,这里是 sft(Supervised Fine-Tuning),表示监督微调。
    do_train: true         # 指定了是否进行训练。
    finetuning_type: lora  # 指定了微调的类型,这里是 lora。
    lora_target: all       # 指定了要进行 lora 微调的目标,这里是 all,表示对所有层进行微调。### dataset
    # dataset: identity,alpaca_en_demo  # 指定了要使用的数据集,这里是 identity 和 alpaca_en_demo。
    dataset: alpaca_zh_demo           # 使用中文的一个数据集,。
    template: llama3                  # 指定了要使用的模板,这里是 llama3。
    cutoff_len: 2048                  # 指定了截断长度,这里是 2048。
    max_samples: 1000                 # 指定了最大样本数,这里是 1000。
    overwrite_cache: true             # 指定了是否覆盖缓存。
    preprocessing_num_workers: 16     # 指定了预处理时的工作线程数,这里是 16。### output
    output_dir: saves/llama3-8b/lora/sft   # 指定了输出目录,这里是 saves/llama3-8b/lora/sft。
    logging_steps: 10                      # 指定了日志输出的步数,这里是 10。
    save_steps: 500                        # 指定了保存模型的步数,这里是 500。
    plot_loss: true                        # 指定了是否绘制损失曲线。
    overwrite_output_dir: true             # 指定了是否覆盖输出目录。### train
    per_device_train_batch_size: 1       # 指定了训练时每个设备的批量大小,这里是 1。
    gradient_accumulation_steps: 8       # 指定了梯度累积的步数,这里是 8。
    learning_rate: 1.0e-4                # 指定了学习率,这里是 1.0e-4。
    num_train_epochs: 3.0                # 指定了训练的总轮数,这里是 3.0。
    lr_scheduler_type: cosine            # 指定了学习率调度器的类型,这里是 cosine。
    warmup_ratio: 0.1                    # 指定了预热比例,这里是 0.1。
    bf16: true                           # 指定了是否使用 bf16 精度。
    ddp_timeout: 180000000               # 指定了 ddp 超时时间,这里是 180000000。### eval
    val_size: 0.1                          # 指定了验证集的大小,这里是 0.1。
    per_device_eval_batch_size: 1          # 指定了验证时每个设备的批量大小,这里是 1。
    eval_strategy: steps                   # 指定了评估策略,这里是 steps。
    eval_steps: 500                        # 指定了评估的步数,这里是 500。

完成以上操作,运行run_with_command.sh后,可正常开启训练。训练结束后,如下图:
在这里插入图片描述


4.3 微调模型的对话测试

  1. run_with_command.sh文件修改内容如下:
    export USE_MODELSCOPE_HUB=1 # 使用 modelscope 下载模型 
    export MODELSCOPE_CACHE="/opt/ai-platform/lldataset/240/modelscope/"
    export MODELSCOPE_MODULES_CACHE="/opt/ai-platform/lldataset/240/modelscope/modelscope_modules"# llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
    llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
    
  2. 打开examples/inference/llama3_lora_sft.yaml文件,同样的需要修改基座模型路径。
    若使用基座模型开启对话,修改后如下:
    # model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
    model_name_or_path: /opt/ai-platform/lldataset/240/modelscope/hub/meta-llama/Meta-Llama-3-8B-Instruct
    template: llama3
    
    若使用微调模型开启对话,修改后如下:
    # model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
    model_name_or_path: /opt/ai-platform/lldataset/240/modelscope/hub/meta-llama/Meta-Llama-3-8B-Instruct
    adapter_name_or_path: saves/llama3-8b/lora/sft
    template: llama3
    finetuning_type: lora
    
  3. 终端键入sh run_with_command.sh。就可以开启和大模型的对话了在这里插入图片描述

4.4 LLaMa Factory 微调模型的合并

上面的两种方式,调用微调模型时,都需要同时加载基座模型。在实际使用时,希望仅使用一个大模型即可,所以这里有个合并的操作。

  1. run_with_command.sh文件修改内容如下:

    export USE_MODELSCOPE_HUB=1 # 使用 modelscope 下载模型 
    export MODELSCOPE_CACHE="/opt/ai-platform/lldataset/240/modelscope/"
    export MODELSCOPE_MODULES_CACHE="/opt/ai-platform/lldataset/240/modelscope/modelscope_modules"# llamafactory-cli train examples/train_lora/llama3_lora_sft.yaml
    # llamafactory-cli chat examples/inference/llama3_lora_sft.yaml
    llamafactory-cli export examples/merge_lora/llama3_lora_sft.yaml
    
  2. 打开examples/merge_lora/llama3_lora_sft.yaml文件,同样的需要修改基座模型路径。
    注意事项:不要在合并 LoRA 适配器时使用量化模型或设置量化位数。这可能会导致合并失败或模型性能下降。

    ### model
    # model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
    model_name_or_path: /opt/ai-platform/lldataset/240/modelscope/hub/meta-llama/Meta-Llama-3-8B-Instruct
    adapter_name_or_path: saves/llama3-8b/lora/sft
    template: llama3
    finetuning_type: lora### export
    export_dir: models/llama3_lora_sft
    export_size: 2
    export_device: cpu   ## 导出时使用的设备
    export_legacy_format: false
    
  3. 终端键入sh run_with_command.sh。成功运行后,在保存路径下生成合并模型。在这里插入图片描述

5 将微调模型仿 OpenAI 兼容接口


5.1 服务的启动

  1. 打开examples/inference/llama3_vllm.yaml,文件内修改个model_name_or_path为微调模型的导出路径。
    model_name_or_path: models/llama3_lora_sft
    template: llama3
    infer_backend: vllm
    vllm_enforce_eager: true
    
  2. 终端键入命令如下
    API_PORT=8000 llamafactory-cli api examples/inference/llama3_vllm.yaml
    
    正常的话,服务应可以正确开启。终端界面如下图:
    在这里插入图片描述
  3. 可能存在报错
    ValueError: Bfloat16 is only supported on GPUs with compute capability of at least 8.0. Your Tesla V100-SXM2-32GB GPU has compute capability 7.0. You can use float16 instead by explicitly setting the`dtype` flag in CLI, for example: --dtype=half.
    
    在这里插入图片描述
    具体原因:GPU 不支持 bfloat16 数据类型。具体的,Tesla V100-SXM2-32GB GPU 的计算能力为 7.0,而 bfloat16 需要至少 8.0 的计算能力。
    解决方案:float16 数据类型代替 bfloat16。
    具体操作:尝试在yaml文件配置,以及终端命令加上对应的参数,均无法正确运行。那就最简单粗暴的方式,在源码中强行设置dtype。
    在文件 src/llamafactory/chat/vllm_engine.py中搜索和添加内容如下
    ## 添加
    engine_args['dtype'] = "float16"
    ## 搜索
    self.model = AsyncLLMEngine.from_engine_args(AsyncEngineArgs(**engine_args))
    
    修改后即可正常运行。

5.2 命令行测试

【服务器上发送请求】

  • 服务器上另起一个终端,键入如下命令
    curl -X POST http://127.0.0.1:8000/v1/chat/completions \
    -H "Content-Type: application/json" \
    -H "Authorization: Bearer x" \
    -d '{"model": "llama3_lora_sft","messages": [{"role": "user","content": "1+1 等于几?"}],"max_tokens": 4096
    }'
    
    若正常运行,打印如下:
    在这里插入图片描述

【本地发送请求】

  • 若想在本地发送请求,则需把命令中的ip切换成服务器的。
  • 但我这里报错无法连接服务。
    在这里插入图片描述
    要解决从本地机器访问远程服务器上的服务的问题,可以使用 SSH 隧道(也称为端口转发),从而绕过防火墙和网络限制。SSH 隧道可以将本地机器上的一个端口转发到远程服务器上的一个端口,从而实现从本地机器访问远程服务。
    具体操作如下:
    • 1 在本地终端运行命令
      ssh -L 8000:127.0.0.1:8000 LL@10.91.208.210
      
      -L 8000:127.0.0.1:8000】 这部分指定了端口转发的配置。
      8000】本地机器上的端口。
      127.0.0.1:8000】 远程服务器上的目标地址和端口。
      LL@10.91.208.210】 远程服务器的登录信息。
    • 2 输入密码
      执行上述命令后,系统会提示你输入远程服务器的密码。输入密码后,SSH 隧道就会建立。
    • 3 在本地测试
      现在,你可以通过本地的 8000 端口访问远程服务器上的服务:
      curl -X POST http://127.0.0.1:8000/v1/chat/completions \
      -H "Content-Type: application/json" \
      -H "Authorization: Bearer x" \
      -d '{"model": "llama3_lora_sft","messages": [{"role": "user","content": "1+1 等于几?"}],"max_tokens": 4096
      }'
      
      可看到服务的相应如下。注意:要保持 SSH 隧道连接状态。如果连接断开,需要重新运行上述命令来重新建立隧道。.在这里插入图片描述

5.3 可视化测试

下载安装NextChat的release版本的windows 版本。下载后傻瓜式安装。https://github.com/ChatGPTNextWeb/ChatGPT-Next-Web/releases
在这里插入图片描述
在这里插入图片描述
先写到这吧,后续待补充。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/62019.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Web 表单开发全解析:从基础到高级掌握 HTML 表单设计

文章目录 前言一、什么是 Web 表单?二、表单元素详解总结前言 在现代 Web 开发中,表单 是用户与后端服务交互的重要桥梁。无论是用户登录、注册、搜索,还是提交反馈,表单都无处不在。在本文中,我们将从基础入手,全面解析表单的核心知识点,并通过示例带你轻松掌握表单开…

nodepad配置c/c++ cmd快速打开创建项目文件

前提:下载MinGw,并且配置环境变量 点击阅读次篇文章配置MinGw 无论是哪个编译器,执行c文件都是经历以下步骤: 编译文件生成exe文件执行该exe文件 我们先手动完成这两部 手动编译文件使用指令 gcc {你的c文件} -o {生成文件名}生成exe文件 第二步运行exe直接点击该文…

打造优秀技术文档的三大方向

✅作者简介:2022年博客新星 第八。热爱国学的Java后端开发者,修心和技术同步精进。 🍎个人主页:Java Fans的博客 🍊个人信条:不迁怒,不贰过。小知识,大智慧。 💞当前专栏…

Xcode15(iOS17.4)打包的项目在 iOS12 系统上启动崩溃

0x00 启动崩溃 崩溃日志,只有 2 行,看不出啥来。 0x01 默认配置 由于我开发时,使用的 Xcode 14.1,打包在另外一台电脑 Xcode 15.3 Xcode 14.1 Build Settings -> Asset Catalog Compliter - Options Xcode 15.3 Build S…

如何使用GCC手动编译stm32程序

如何不使用任何IDE(集成开发环境)编译stm32程序? 集成开发环境将编辑器、编译器、链接器、调试器等开发工具集成在一个统一的软件中,使得开发人员可以更加简单、高效地完成软件开发过程。如果我们不使用KEIL,IAR等集成开发环境,…

QUICK 调试camera-xml解析

本文主要介绍如何在QUICK QCS6490使能相机模组。QCS6490的相机基于CameraX的框架,只需通过配置XML文件,设置相机模组的相关参数,就可以点亮相机。本文主要介绍Camera Sensor Module XML和Camera Sensor XML配置的解析,这中间需要c…

数据结构 (11)串的基本概念

一、串的定义 1.串是由一个或者多个字符组成的有限序列,一般记为:sa1a2…an(n≥0)。其中,s是串的名称,用单括号括起来的字符序列是串的值;ai(1≤i≤n)可以是字母、数字或…

汽车渲染领域:Blender 和 UE5 哪款更适用?两者区别?

在汽车渲染领域,选择合适的工具对于实现高质量的视觉效果至关重要。Blender和UE5(Unreal Engine 5)作为两大主流3D软件,各自在渲染动画方面有着显著的差异。本文将从核心定位与用途、工作流程、渲染技术和灵活性、后期处理与合成四…

开源加密库mbedtls及其Windows编译库

目录 1 项目简介 2 功能特性 3 性能优势 4 平台兼容性 5 应用场景 6 特点 7 Windows编译 8 编译静态库及其测试示例下载 1 项目简介 Mbed TLS是一个由ARM Maintained的开源项目,它提供了一个轻量级的加密库,适用于嵌入式系统和物联网设备。这个项…

C语言数据结构——详细讲解 双链表

从单链表到双链表:数据结构的演进与优化 前言一、单链表回顾二、单链表的局限性三、什么是双链表四、双链表的优势1.双向遍历2.不带头双链表的用途3.带头双链表的用途 五、双链表的操作双链表的插入操作(一)双链表的尾插操作(二&a…

MYSQL 表的增删改查(上)

目录 1.新增数据 2.查询数据 一般查询 去重查询 排序查询 关于NULL 条件查询 分页查询 1.新增数据 语法:insert into 表名[(字段1,字段2...)] values (值,值....); 插入一条新数据行,前面指定的列,要与后面v…

Docker pull镜像拉取失败

因为一些原因,很多镜像仓库拉取镜像失败,所以需要更换不同的镜像,这是2024/11/25测试可用的仓库。 标题1、 更换镜像仓库的地址,编辑daemon.json文件 vi /etc/docker/daemon.json标题2、然后将下面的镜像源放进去或替换掉都可以…

C语言学习 12(指针学习1)

一.内存和地址 1.内存 在讲内存和地址之前,我们想有个⽣活中的案例: 假设有⼀栋宿舍楼,把你放在楼⾥,楼上有100个房间,但是房间没有编号,你的⼀个朋友来找你玩,如果想找到你,就得挨…

VITE+VUE3+TS环境搭建

前言(与搭建项目无关): 可以安装一个node管理工具,比如nvm,这样可以顺畅的切换vue2和vue3项目,以免出现项目跑不起来的窘境。我使用的nvm,当前node 22.11.0 目录 搭建项目 添加状态管理库&…

Zookeeper选举算法与提案处理概览

共识算法(Consensus Algorithm) 共识算法即在分布式系统中节点达成共识的算法,提高系统在分布式环境下的容错性。 依据系统对故障组件的容错能力可分为: 崩溃容错协议(Crash Fault Tolerant, CFT) : 无恶意行为,如进程崩溃,只要…

ffmpeg视频滤镜:提取缩略图-framestep

滤镜描述 官网地址 > FFmpeg Filters Documentation 这个滤镜会间隔N帧抽取一帧图片&#xff0c;因此这个可以用于设置视频的缩略图。总体上这个滤镜比较简单。 滤镜使用 滤镜参数 framestep AVOptions:step <int> ..FV....... set frame st…

微服务篇-深入了解使用 RestTemplate 远程调用、Nacos 注册中心基本原理与使用、OpenFeign 的基本使用

&#x1f525;博客主页&#xff1a; 【小扳_-CSDN博客】 ❤感谢大家点赞&#x1f44d;收藏⭐评论✍ 文章目录 1.0 认识微服务 1.1 单体架构 1.2 微服务 1.3 SpringCloud 框架 2.0 服务调用 2.1 RestTemplate 远程调用 3.0 服务注册和发现 3.1 注册中心原理 3.2 Nacos 注册中心 …

TCP/IP学习笔记

TCP\IP从实际应用的五层结构开始&#xff0c;自顶而下的去分析每一层。 TCP/IP五层架构概述 学术上面是TCP/IP四层架构&#xff0c;OSI/ISO是七层架构&#xff0c;实际中使用的是TCP/IP五层架构。 数据链路层 ICMP数据包分析 Wireshark抓包分析ICMP协议_wireshark抓ping包分析…

互联网视频推拉流EasyDSS视频直播点播平台视频转码有哪些技术特点和应用?

视频转码本质上是一个先解码再编码的过程。在转码过程中&#xff0c;原始视频码流首先被解码成原始图像数据&#xff0c;然后再根据目标编码标准、分辨率、帧率、码率等参数重新进行编码。这样&#xff0c;转换前后的码流可能遵循相同的视频编码标准&#xff0c;也可能不遵循。…

深入理解 Java 基本语法之运算符

&#xff08;一&#xff09;研究背景 在 Java 编程中&#xff0c;运算符是处理数据和变量的基本工具&#xff0c;掌握各种运算符的使用方法对于提高编程效率至关重要。 &#xff08;二&#xff09;研究目的 深入理解 Java 基础运算符的概念、分类和作用&#xff0c;通过具体…