2024 - 超火的多模态深度学习公共数据纯生信5+思路分享

超火的多模态深度学习公共数据纯生信5+思路分享

多模态深度学习具有处理和整合多种类型信息的优势,特别是在预测患者预后方面能够结合不同类型的生物医学数据,如临床数据、基因表达数据、蛋白质组学数据、成像数据等,进而提高预后预测的准确性和鲁棒性。因此,这一领域得到了快速发展,并成为当前生信分析中备受关注的热门领域。小编今天就和大家分享一篇今年6月发表在**Precision Clinical Medicine(5.1/Q1)**杂志上题为“Deep learning-based multi-modal data integration enhancing breast cancer disease-free survival prediction”基于多模态深度机器学习术前预测乳腺癌患者无病生存期(DFS)的文章。

图片

一.文章摘要

**研究从TCGA和中山大学中山纪念医院(SYSMH)收集了乳腺癌患者的病理影像、基因和临床数据,开发了一个基于深度学习的多模态模型(DeepClinMed-PGM)以预测患者DFS。**结果研究观察到多模态模型DeepClinMed-PGM在训练队列、内部验证队列和外部测试队列都表现出良好的预测效能。总之,该研究引开发了一个结合影像学、分子和临床数据的多模态乳腺癌预后预测模型,提高了乳腺癌患者DFS预测的准确性,为患者个性化治疗提供了参考。

二.文章的主要内容及结果

1.基于病理的深度学习模型的开发

**文章首先介绍了研究涉及患者的主要特征。**研究纳入了来自SYSMH和TCGA的1020例非转移性乳腺癌患者(表1),后续分析中这些患者被划分为训练队列(n = 741),内部验证队列(n = 184)和外部测试队列(n = 95)。

图片表1 TCGA和SYSMH组患者的临床特征

**文章接着介绍了基于深度学习开发乳腺癌多模态预后预测模型的流程。**研究整合患者病理及基因分子、临床数据基于深度机器学习开发了多模态预后预测模型DeepClinMed-PGM,主要流程如图1所示。具体来说研究首先以8:2的比例将925例TCGA患者随机分为训练组和内部验证组。接着对单个整张切片图像(WSIs)进行操作,使用改进的CLAM架构和弱监督学习训练原发肿瘤组织区域。接下来研究从病理图像中自动提取原发肿瘤斑块,并开发了一个基于深度病理的多实例学习生存模型,以预测基于患者的DFS风险,该模型使用改进的ResNet50架构进行特征提取和迁移学习算法,能够有效地识别出关键特征(图1B)。此外,研究进一步将分子和临床病理特征与基于病理的生存模型相结合,形成DeepClinMed-PGM,其整合了分子和临床病理数据,为DFS预测提供了个性化的方法(图1C)。

图片图1 本研究的工作流程和图形方法概述

2.整合多模态数据和临床信息加强预测

**文章接着整合多模态及临床数据对模型进行优化。**研究首先分析了PAM50亚型、年龄、临床TNM分期和免疫细胞浸润等219个基因和临床病理因素。接着研究将32个临床病理特征与深度学习模型相结合,结果发现能够显著提高训练及验证队列预测的准确性(图2A-C)。此外,研究通过DeepClinMed-PGM模型得分将患者分为高和低风险组,并观察到DeepClinMed-PGM模型的稳健判别能力在不同的队列中都是一致的(图2D-F)。研究通过决策曲线(DCA)分析也观察到所有队列中,与基于病理的生存模型、基因特征和单独的病理特征相比,DeepClinMed-PGM模型性能始终更优越(图2G-I),这一结果强调了DeepClinMed-PGM模型在早期DFS预测中的重要临床价值。

图片图2 训练集、验证集和测试集的AUC和KM曲线

3.模型结果可视化

**文章接着介绍了模型结果的分析及可视化。**研究利用病理样本的WSIs进行分析,并结合训练队列的RNA测序数据,识别了高和低风险组间的219个差异表达基因(图3A)。接着研究对这些基因进行GO及KEGG富集分析,结果观察到这些基因富集到与免疫和转录相关的关键功能和通路(图3B,C)。此外,研究在训练队列中也观察到KMT2C和MAP3K1具有很高的突变频率(图3D)。同时研究观察到高风险组和低风险组间免疫细胞浸润也存在显著差异(图3E)。

图片图3 高低组差异分析

**研究也绘制了病理热图展示肿瘤组织与模型预测的关联。**热图中的暖色(如红色)表示对模型预测有较高影响,冷色(如蓝色)表示对模型预测的影响较低。较深的阴影表示更强的网络反应,具有更高的权重,表明模型对这些特定区域的关注更加强烈。蓝色阴影的主要代表肿瘤的边界、形状和纹理等结构。研究观察到复发或转移风险高的患者在肿瘤附近和远处均有集中的热点,而无复发或转移风险的患者热点则主要集中在肿瘤区域内(图4)。

图片图4 病理热图显示人工智能识别出的感兴趣区域(ROI)

4.多模态模型结果评估

**文****章最后对构建的多模态模型的结果进行了解读及评估。**首先为了评估临床特征对乳腺癌患者DFS的预测作用,研究在训练和试验队列进行了单因素回归分析,结果发现年龄、分期、T分期和N分期等临床特征不能独立预测乳腺癌患者的DFS,而多模态风险评分在训练和试验队列中都是更有效的预测因子(图5A-B )。接着研究使用CIBERSORT算法进行免疫浸润分析,结果发现高风险组中M2和M0巨噬细胞的浸润较高(图5C)。此外,研究分析也发现免疫检查点基因在低风险组的表达普遍较高(图5D)。

图片图5 不同危险人群差异分子特征的验证

此外研究也发现低风险组免疫因子相关基因的表达也较高(图6A)。研究对免疫因子相关基因进行富集分析发现其主要富集在补体激活、吞噬、雌激素信号、趋化因子信号、细胞黏附及细胞通讯等通路(图6B-D)。

图片图6 不同风险人群差异分子特征的免疫学分析

到这里文章的主要内容就介绍完啦,总结一下**该研究基于深度学习构建了乳腺癌DFS预测多模态模型,并在多个数据集中验证了该模型的预测准确性,同时也对预测结果进行了相关表达、功能及免疫浸润等的全面解读。**相较于经典的构建预后特征方法,多模态深度学习能够融合不同模式的数据,更好地处理、解释并整合不同来源的数据信息。因此,多模态深度学习也成为了近期大火的发文思路,感兴趣的小伙伴不要错过呀。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/61037.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入解析大带宽服务器:性能优势与选择指南

一、大带宽服务器是什么? 大带宽服务器指的是具备高网络带宽能力的服务器,通常提供1Gbps、10Gbps甚至更高的网络连接能力。与普通带宽服务器相比,大带宽服务器能够在更短时间内传输大量数据,因此常用于高流量、高并发需求的场景&…

【MySQL】RedHat8安装mysql9.1

一、下载安装包 下载地址:MySQL Enterprise Edition Downloads | Oracle MySQL :: MySQL Community Downloads 安装包:mysql-enterprise-9.1.0_el8_x86_64_bundle.tar 官方 安装文档:MySQL Enterprise Edition Installation Guide 二、安装…

力扣(leetcode)题目总结——动态规划篇

leetcode 经典题分类 链表数组字符串哈希表二分法双指针滑动窗口递归/回溯动态规划二叉树辅助栈 本系列专栏:点击进入 leetcode题目分类 关注走一波 前言:本系列文章初衷是为了按类别整理出力扣(leetcode)最经典题目&#xff0c…

Vscode/Code-server无网环境安装通义灵码

Date: 2024-11-18 参考材料:https://help.aliyun.com/zh/lingma/user-guide/individual-edition-login-tongyi-lingma?spma2c4g.11186623.0.i0 1. 首先在vscode/code-server插件市场中安装通义插件,这步就不细说了。如果服务器没网,会问你要…

力扣周赛:第424场周赛

👨‍🎓作者简介:爱好技术和算法的研究生 🌌上期文章:力扣周赛:第422场周赛 📚订阅专栏:力扣周赛 希望文章对你们有所帮助 第一道题模拟题,第二道题经典拆分数组/线段树都…

STM32单片机设计防儿童人员误锁/滞留车内警报系统

目录 目录 前言 一、本设计主要实现哪些很“开门”功能? 二、电路设计原理图 1.电路图采用Altium Designer进行设计: 2.实物展示图片 三、程序源代码设计 四、获取资料内容 前言 近年来在车辆逐渐普及的情况下,由于家长的疏忽,将…

Vue Canvas实现区域拉框选择

canvas.vue组件 <template><div class"all" ref"divideBox"><!-- 显示图片&#xff0c;如果 imgUrl 存在则显示 --><img id"img" v-if"imgUrl" :src"imgUrl" oncontextmenu"return false" …

开源音乐分离器Audio Decomposition:可实现盲源音频分离,无需外部乐器分离库,从头开始制作。将音乐转换为五线谱的程序

今天给大家分析一个音频分解器&#xff0c;通过傅里叶变换和信封匹配分离音乐中的各个音符和乐器&#xff0c;实现音乐到乐谱的转换。将音乐开源分离为组成乐器。该方式是盲源分离&#xff0c;从头开始制作&#xff0c;无需外部乐器分离库。 相关链接 代码&#xff1a;https:…

智慧安防丨以科技之力,筑起防范人贩的铜墙铁壁

近日&#xff0c;贵州省贵阳市中级人民法院对余华英拐卖儿童案做出了一审宣判&#xff0c;判处其死刑&#xff0c;剥夺政治权利终身&#xff0c;并处没收个人全部财产。这一判决不仅彰显了法律的威严&#xff0c;也再次唤起了社会对拐卖儿童犯罪的深切关注。 余华英自1993年至2…

【原创】java+ssm+mysql房屋租赁管理系统设计与实现

个人主页&#xff1a;程序猿小小杨 个人简介&#xff1a;从事开发多年&#xff0c;Java、Php、Python、前端开发均有涉猎 博客内容&#xff1a;Java项目实战、项目演示、技术分享 文末有作者名片&#xff0c;希望和大家一起共同进步&#xff0c;你只管努力&#xff0c;剩下的交…

Linux高阶——1116—环形队列生产者消费者

目录 1、环形队列 2、生产者消费者 环形队列数组实现代码 成功截图 1、环形队列 相比于线性队列&#xff0c;环形队列可以有效避免访问越界问题&#xff0c;使用下标访问队列元素时&#xff0c;到达末尾后下标归0&#xff0c;返回起始位置&#xff0c;使用下标运算即可 a…

构建SSH僵尸网络

import argparse import paramiko# 定义一个名为Client的类&#xff0c;用于表示SSH客户端相关操作 class Client:# 类的初始化方法&#xff0c;接收主机地址、用户名和密码作为参数def __init__(self, host, user, password):self.host hostself.user userself.password pa…

199. 二叉树的右视图【 力扣(LeetCode) 】

文章目录 零、原题链接一、题目描述二、测试用例三、解题思路四、参考代码 零、原题链接 199. 二叉树的右视图 一、题目描述 给定一个二叉树的 根节点 root&#xff0c;想象自己站在它的右侧&#xff0c;按照从顶部到底部的顺序&#xff0c;返回从右侧所能看到的节点值。 二…

Mongo数据库集群搭建

目录 1、Mongo集群优势 1.1 高可用性 1.2 水平扩展性 1.3 高性能 1.4 灵活的架构设计 1.5 数据安全 1.6 管理与监控 2、下载指定操作系统版本包 3、部署和验证工作 3.1 准备配置文件及依赖 3.2 启动第一个节点 3.3 部署更多的节点 3.4 初始化副本集 3.5 设置管理…

DB Type

P位 p 1时段描述符有效&#xff0c;p 0时段描述符无效 Base Base被分成了三个部分&#xff0c;按照实际拼接即可 G位 如果G 0 说明描述符中Limit的单位是字节&#xff0c;如果是G 1 &#xff0c;那么limit的描述的单位是页也就是4kb S位 S 1 表示代码段或者数据段描…

Qt 5.6.3 手动配置 mingw 环境

- 安装 qt 5.6.3 mingw 版 - 打开 qt creator - 找到选项 工具 - 选项- 构建和运行 - 找到 “编译器” 选项卡 ,点击 "添加" “编译器路径” 设置为 qt 安装目录下&#xff0c; tool 文件夹内的 g.exe 设置完成后&#xff0c;点击 "apply" ,使选项生…

k8s上部署redis高可用集群

介绍&#xff1a; Redis Cluster通过分片&#xff08;sharding&#xff09;来实现数据的分布式存储&#xff0c;每个master节点都负责一部分数据槽&#xff08;slot&#xff09;。 当一个master节点出现故障时&#xff0c;Redis Cluster能够自动将故障节点的数据槽转移到其他健…

抖音热门素材去哪找?优质抖音视频素材网站推荐!

是不是和我一样&#xff0c;刷抖音刷到停不下来&#xff1f;越来越多的朋友希望在抖音上创作出爆款视频&#xff0c;但苦于没有好素材。今天就来推荐几个超级实用的抖音视频素材网站&#xff0c;让你的视频内容立刻变得高大上&#xff01;这篇满是干货&#xff0c;直接上重点&a…

Dify 通过导入 DSL 文件创建 Workflow 过程及实现

本文使用 Dify v0.9.2 版本&#xff0c;主要介绍 Dify 通过导入 DSL&#xff08;或 URL&#xff09;文件创建&#xff08;或导出&#xff09;Workflow 的操作过程及源码分析实现过程。Dify通过导入DSL文件创建Workflow过程及实现&#xff1a;https://z0yrmerhgi8.feishu.cn/wik…

代码随想录第46期 单调栈

这道题主要是单调栈的简单应用 class Solution { public:vector<int> dailyTemperatures(vector<int>& T) {vector<int> result(T.size(),0);stack<int> st;st.push(0);for(int i1;i<T.size();i){if(T[i]<T[st.top()]){st.push(i);}else{wh…