机器学习 贝叶斯公式

这是条件概率的计算公式

𝑃(𝐴|𝐵)=𝑃(B|A)𝑃(𝐴)/𝑃(𝐵)

全概率公式

𝑃(𝐵)=𝑃(𝐵|𝐴)𝑃(𝐴)+𝑃(𝐵|𝐴′)𝑃(𝐴′)
 

条件概率的另一种写法:

贝叶斯推断

对条件概率公式进行变形,可以得到如下形式:

我们把P(A)称为"先验概率"(Prior probability),即在B事件发生之前,我们对A事件概率的一个判断。

P(A|B)称为"后验概率"(Posterior probability),即在B事件发生之后,我们对A事件概率的重新评估。

P(B|A)/P(B)称为"可能性函数"(Likelyhood),这是一个调整因子,使得预估概率更接近真实概率。

所以,条件概率可以理解成下面的式子:

后验概率=先验概率x调整因子

这就是贝叶斯推断的含义。我们先预估一个"先验概率",然后加入实验结果,看这个实验到底是增强还是削弱了"先验概率",由此得到更接近事实的"后验概率"。

朴素贝叶斯推断

理解了贝叶斯推断,那么让我们继续看看朴素贝叶斯。贝叶斯和朴素贝叶斯的概念是不同的,区别就在于“朴素”二字,朴素贝叶斯对条件概率分布做了条件独立性的假设。 比如下面的公式,假设有n个特征:

根据贝叶斯定理,后验概率 P(a|X) 可以表示为:

其中:

P(X|a) 是给定类别 ( a ) 下观测到特征向量 ​的概率;

P(a) 是类别 a 的先验概率;

P(X) 是观测到特征向量 X 的边缘概率,通常作为归一化常数处理。

朴素贝叶斯分类器的关键假设是特征之间的条件独立性,即给定类别 a ,特征 ​ 和 ​ (其中 ​ 相互独立。)

因此,我们可以将联合概率 P(X|a) 分解为各个特征的概率乘积:

将这个条件独立性假设应用于贝叶斯公式,我们得到:

这样,朴素贝叶斯分类器就可以通过计算每种可能类别的条件概率和先验概率,然后选择具有最高概率的类别作为预测结果。

from sklearn.datasets import load_iris

from sklearn.naive_bayes import MultinomialNB

from sklearn.model_selection import train_test_split

import joblib

model=MultinomialNB()

x,y=load_iris(return_X_y=True)

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

model.fit(x_train,y_train)

score=model.score(x_test,y_test)

print(score)

joblib.dump(model,'../model/bayes.bin')

model=joblib.load('../model/bayes.bin')

y_predict=model.predict([[1,2,3,4]])

print(y_predict)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/60524.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【工具插件类教学】在 Unity 中使用 iTextSharp 实现 PDF 文件生成与导出

目录 一、准备工作 1. 安装 iTextSharp 2. 准备资源文件 二、创建 ExportPDFTool 脚本 1、初始化 PDF 文件,设置字体 2、添加标题、内容、表格和图片 三、使用工具类生成 PDF 四、源码地址 在 Unity 项目中,我们有时会需要生成带有文本、表格和图片的 PDF 文件,以便…

Java 责任链模式 减少 if else 实战案例

一、场景介绍 假设有这么一个朝廷,它有 县-->府-->省-->朝廷,四级行政机构。 这四级行政机构的关系如下表: 1、县-->府-->省-->朝廷:有些地方有完整的四级行政机构。 2、县-->府-->朝廷:直…

vue项目使用eslint+prettier管理项目格式化

代码格式化、规范化说明 使用eslintprettier进行格式化,vscode中需要安装插件ESLint、Prettier - Code formatter,且格式化程序选择为后者(vue文件、js文件要分别设置) 对于eslint规则,在格式化时不会全部自动调整&…

Leetcode 整数转罗马数字

这段代码的算法思想是基于罗马数字的减法规则,将整数转换为罗马数字的字符串表示。下面是详细的解释: 算法步骤: 定义数值和符号对应关系:代码中定义了两个数组:values 和 symbols。values 数组包含了罗马数字的数值&…

web——sqliabs靶场——第六关——报错注入和布尔盲注

这一关还是使用报错注入和布尔盲注 一. 判断是否有sql注入 二. 判断注入的类型 是双引号的注入类型。 3.报错注入的检测 可以使用sql报错注入 4.查看库名 5. 查看表名 6.查看字段名 7. 查具体字段的内容 结束 布尔盲注 结束

Spring Cloud Eureka 服务注册与发现

Spring Cloud Eureka 服务注册与发现 一、Eureka基础知识概述1.Eureka两个核心组件2.Eureka 服务注册与发现 二、Eureka单机搭建三、Eureka集群搭建四、心跳续约五、Eureka自我保护机制 一、Eureka基础知识概述 1.Eureka两个核心组件 Eureka Server :服务注册中心…

CAN通讯演示(U90-M24DR)

概述 CAN通讯一般用的不多,相比于Modbus通讯不是特别常见,但也会用到,下面介绍一下CAN通讯,主要用U90军用PLC演示一下具体的数据传输过程。想更具体的了解的话,可以自行上网学习,此处大致介绍演示。…

时序论文19|ICML24 : 一篇很好的时序模型轻量化文章,用1k参数进行长时预测

论文标题:SparseTSF: Modeling Long-term Time Series Forecasting with 1k Parameters 论文链接:https://arxiv.org/pdf/2402.01533 代码链接:https://github.com/lss-1138/SparseTSF 前言 最近读论文发现时间序列研究中,模型…

(动画版)排序算法 -希尔排序

文章目录 1. 希尔排序(Shellsort)1.1 简介1.2 希尔排序的步骤1.3 希尔排序的C实现1.4 时间复杂度1.5 空间复杂度1.6 希尔排序动画 1. 希尔排序(Shellsort) 1.1 简介 希尔排序(Shells Sort),又…

Python学习从0到1 day26 第三阶段 Spark ④ 数据输出

半山腰太挤了,你该去山顶看看 —— 24.11.10 一、输出为python对象 1.collect算子 功能: 将RDD各个分区内的数据,统一收集到Driver中,形成一个List对象 语法: rdd.collect() 返回值是一个list列表 示例: from …

DNS解析库

DNS解析库 dnsDNS的解析库以及域名的详解解析库dns解析的端口dns域名的长度限制流程优先级在现实环境中实现内网的dns解析 练习(Ubuntu内网实现DNS解析)主服务器备服务器 dns 域名系统,域名和ip地址互相映射的一个分布式的数据库&#xff0c…

kafka 生产经验——数据积压(消费者如何提高吞吐量)

bit --> byte --> kb -->mb -->gb --> tb --> pb --> eb -> zb -->yb

【记录】公司管理平台部署:容器化部署

前置条件 技能要求 了解Docker基本使用和常用命令。会写Dockerfile文件。会写docker-compose文件环境要求 云服务器,已安装好安装Docker本机 IntelliJ IDEA 2022.1.3配置 配置服务器SSH连接 进入 Settings -> Tools -> SSH Configurations 点击加号创建SSH连接配置 填…

从零开始 blender插件开发

blender 插件开发 文章目录 blender 插件开发环境配置1. 偏好设置中开启相关功能2. 命令行打开运行脚本 API学习专有名词1. bpy.data 从当前打开的blend file中,加载数据。2. bpy.context 可用于获取活动对象、场景、工具设置以及许多其他属性。3. bpy.ops 用户通常…

el-table 行列文字悬浮超出屏幕宽度不换行的问题

修改前的效果 修改后的效果 ui框架 element-plus 在网上找了很多例子都没找到合适的 然后这个东西鼠标挪走就不显示 控制台也不好调试 看了一下El-table的源码 他这个悬浮文字用的el-prpper 包着的 所以直接改 .el-table .el-propper 设置为max-width:1000px 就可以了 吐槽一…

Tcp中的流量控制,拥塞控制,超时重传时间的选择,都附带相应例子说明

端口号的了解 通常进行通信时,发送方使用任意端口,指定接收方为指定端口,因为接收方在接收到后的需要根据发送方指定的接收方端口号,来选择使用哪一个服务进程进行处理。 端口号还可以分类为两个大类: TCP和UDP报文的…

Nextflow最佳实践:如何在云上高效处理大规模数据集

1. Nextflow 软件架构介绍 Nextflow 是一个用于简化数据驱动计算流程的工具,可以在各种计算环境中轻松部署。它采用了分布式计算和容器技术,实现了高度模块化、可重复性和可扩展性。NextFlow 的软件架构主要包括以下几个部分: 用户界面&…

一文看懂ERP、SCM、SRM、WMS、TMS、进销存管理系统

经常有人来私信问我ERP、SCM、SRM、WMS、TMS、进销存管理系统等等,它们听起来都很专业,但到底各自是什么?承担着怎样的角色呢?它们具体都有哪些功能?相互之间又存在怎样的关联,对企业而言又意味着什么呢&am…

深度学习——优化算法、激活函数、归一化、正则化

文章目录 🌺深度学习面试八股汇总🌺优化算法方法梯度下降 (Gradient Descent, GD)动量法 (Momentum)AdaGrad (Adaptive Gradient Algorithm)RMSProp (Root Mean Square Propagation)Adam (Adaptive Moment Estimation)AdamW 优化算法总结 经验和实践建议…

YOLOv11实战宠物狗分类

本文采用YOLOv11作为核心算法框架,结合PyQt5构建用户界面,使用Python3进行开发。YOLOv11以其高效的特征提取能力,在多个图像分类任务中展现出卓越性能。本研究针对5种宠物狗数据集进行训练和优化,该数据集包含丰富的宠物狗图像样本…