java多线程编程(二)一一>线程安全问题, 单例模式, 解决程线程安全问题的措施

引言: 

如果多线程环境下代码运行的结果是符合我们预期的,即在单线程环境应该的结果,则说这个程序是线程安全的


线程安全问题的原因:

一.操作系统的随机调度 :

二.多个线程修改同一个变量: 

三.修改操作不是原子的 :

四.内存可见性 :

五.指令重排序:  

解决上述的线程安全问题的措施:   



线程安全问题的原因:

 一.操作系统的随机调度 :  

1. 这是线程安全问题的 罪魁祸首 随机调度使⼀个程序在多线程环境下, 执行顺序存在很多的变数.

例子:这个代码返回结果就是随机调度的体现 

 现象: 

class MyThread extends Thread {@Overridepublic void run() {while (true) {System.out.println("这⾥是t线程运⾏的代码");try {Thread.sleep(1000);} catch (InterruptedException e) {e.printStackTrace();}}}
}public class Demo1 {public static void main(String[] args) throws InterruptedException {MyThread t = new MyThread();t.start();while (true) {System.out.println("这里是主线程");Thread.sleep(1000);}}
}

现象: 


二.多个线程修改同一个变量: 

上⾯的线程不安全的代码中, 涉及到多个线程针对 count 变量进行修改.
此时这个 count 是⼀个多个线程都能访问到的 "共享数据" 
 

例子:下面这个代码应该预期应该自增10w次,但是由于线程安全问题,达不到预期 
public class Demo11 {private static int count = 0;public static void main(String[] args) throws InterruptedException {Thread t1 = new Thread(() -> {for (int i = 0; i < 50000; i++) {count++;}System.out.println("t1 结束");});Thread t2 = new Thread(() -> {for (int i = 0; i < 50000; i++) {count++;}System.out.println("t2 结束");});t1.start();t2.start();t1.join();t2.join();// 一个线程自增 5w 次, 两个线程, 总共自增 10w 次. 预期结果, count = 10wSystem.out.println(count);}
}

三.修改操作不是原子的 : 

这里我们count++,时候站在操作系统层面,我们要进行大致三步:

load:把count的值读到寄存器里 

add: 把寄存器中的内容加1

save:  把寄存器写回内存  

进行以上以上操作时候由于操作系统随机调度多个线程之间,可能出现数据被覆盖的情况,这就是操作不原子的体现: 


四.内存可见性 : 

这个问题可以引入Java内存模型说明: 

线程之间的共享变量存在 主内存 (Main Memory).(主内存就是泛指的内存)
每⼀个线程都有自己的 "工作内存" (Working Memory) .(工作内存指的是CPU 的寄存器和高速缓存L1,L2,L3)
当线程要读取一个共享变量的时候, 会先把变量从主内存拷贝到工作内存(CPU 的寄存器), 再从工作内存(CPU 的寄存器),读取数据。 
其实是通过jvm和编译器来实现优化,把读内存优化为读寄存器了,有时候这个优化逻辑不符合我们的预期的逻辑出现细节上的偏差,就导致内存可见性问题

代码实例:一个线程读取一个线程修改
这个循环条件的flag判断是条件跳转指令cmp是寄存器操作会很快,while会循环很多次,jvm觉得每次觉得读到的都是0,直接就把 读内存优化为读寄存器了, 此时寄存器的值为0,此时用户输入 1 想结束线程时,t1线程读不到这个在内存中(主内存)的值,所以这个t1线程结束不了
public static void main(String[] args) {Thread t1 = new Thread(()->{while (flag == 0){}System.out.println("t1线程结束");});Thread t2 = new Thread(()->{Scanner in = new Scanner(System.in);System.out.println("请输入flag的值");flag = in.nextInt();});t1.start();t2.start();}


五.指令重排序:

要说清楚这个问题就要引入一种设计模式:单例模式

 单例模式: 

单例模式能保证某个类在程序中只存在唯⼀⼀份实例, 而不会创建出多个实例,不能创建多个对象,这里有两种写法:饿汉模式和懒汉模式: 

1.饿汉模式:  类加载的同时, 创建实例:  
类加载时就new对象所以成为饿汉模式,注意构造方法私有化,防止类外多次实例化。
​
class Singleton {private static Singleton instance = new Singleton();//类加载时就new对象//构造方法私有化,防止类外被实例化多个对象private Singleton() {}public static Singleton getInstance() {return instance;}
}​

2.懒汉模式-单线程版:  

懒汉模式,能不实例化就不实例化所以的懒汉, 第⼀次使用的时候才创建实例

class Singleton {private static Singleton instance = null;private Singleton() {}public static Singleton getInstance() {if (instance == null) {instance = new Singleton();}return instance;}
}

 但是这个在多线程下还是存在线程安全问题的,而且还有一个指令重排序问题 。

 就算加锁(结合下面看看),解决了线程安全问题,但是instance = new Singleton();

new对象操作,细分为这三步:

1 .申请内存空间

2.构造对象(初始化)

3.内存空间首地址,赋值给引用变量  
由于指令重排序,可能会改变顺序,顺序可能从1,2,3一一>1,3,2  
在这个代码情况下就可能,在类外调用,getInstance方法拿到未初始化的对象导致线程安全问题。
 
class Singleton {private static Singleton instance = null;private static Object locker = new Object(); private Singleton() {}public synchronized static Singleton getInstance() {if(instance == null) {//进一步优化效率,减少锁的阻塞状态,(instance == null才加锁才new对象)synchronized(locker){if (instance == null) {instance = new Singleton();}}}return instance;}}



解决上述的线程安全问题的措施:   

操作系统的随机调度 是操作系统,计算机一脉传承,不能解决,
接下来我们围绕三~四~五~展开 

三.修改操作不是原子的 : 

这里我们可以把相关的操作打包起来,就是引入锁:

synchronized 关键字 - 监视器锁 monitor lock :

synchronized 会起到互斥效果, 某个线程执⾏到某个对象的 synchronized 中时, 其他线程如果也执行 到同⼀个对象 synchronized 就会阻塞等待.
进⼊ synchronized 修饰的代码块, 相当于 加锁
退出 synchronized 修饰的代码块, 相当于 解锁 
 就和上厕所一样:

理解 "阻塞等待":
针对每⼀把锁, 操作系统内部都维护了⼀个等待队列. 当这个锁被某个线程占有的时候, 其他线程尝试 进行加锁, 就加不上了, 就会阻塞等待, ⼀直等到之前的线程解锁之后, 由操作系统唤醒⼀个新的线程, 再来获取到这个锁。
注意:这里还有一种应用程序级别的忙等,不涉及操作系统

三.的解决代码:

这里注意两个线程要加他一把锁,才有互斥的效果。 

 

 private static int count = 0;public static void main(String[] args) throws InterruptedException {Object locker = new Object();Thread t1 = new Thread(() -> {synchronized (locker) {for (int i = 0; i < 50000; i++) {count++;}}System.out.println("t1 结束");});Thread t2 = new Thread(() -> {synchronized (locker) {for (int i = 0; i < 50000; i++) {count++;}}System.out.println("t2 结束");});t1.start();t2.start();t1.join();t2.join();// 一个线程自增 5w 次, 两个线程, 总共自增 10w 次. 预期结果, count = 10wSystem.out.println(count);}
  

四.内存可见性解决:  

这里引入volatile关键字:


1.volatile 能保证每次读取操作都是读内存

2.volatile 能保证变量的读取和修改不会出发指令重排序 

​public class{
public volitile static int flag = 0 //这样修饰变量编译器就不会优化了
public static void main(String[] args) {Thread t1 = new Thread(()->{while (flag == 0){}System.out.println("t1线程结束");});Thread t2 = new Thread(()->{Scanner in = new Scanner(System.in);System.out.println("请输入flag的值");flag = in.nextInt();});t1.start();t2.start();}​}

五.指令重排序:

饿汉模式是没有线程安全问题和指令重排序的,因为都是读操作

懒汉模式下就会有:

我们也加上volatile关键字:

​
class Singleton {private static volatile Singleton instance = null;//加上volatile private static Object locker = new Object(); private Singleton() {}public synchronized static Singleton getInstance() {if(instance == null) {//进一步优化效率,减少锁的阻塞状态,(instance == null才加锁才new对象)synchronized(locker){if (instance == null) {instance = new Singleton();}}}return instance;}}​

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/59380.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

推荐一款非常好用的视频编辑软件:Movavi Video Editor Plus

MovaviVideoEditorPlus(视频编辑软件)可以制作令人惊叹的视频&#xff0c;即使您没有任何视频编辑方面的经验! 该款视频编辑程序没有复杂的设置&#xff0c;只需进行直观的拖放控制。在您的电脑上免费使用MovaviVideoEditor亲身体验它的简单易用性与强大功能! 基本简介 您是否…

Pimpl(Pointer to Implementation)模式详解

Pimpl&#xff08;Pointer to Implementation&#xff09;模式详解 在 C 中&#xff0c;Pimpl 模式&#xff08;Pointer to Implementation&#xff09;是一种设计技巧&#xff0c;常用于隐藏实现细节&#xff0c;减少头文件的依赖。这种模式又被称为“隐式实现”或“编译防护…

js下载excel示例demo

<Buttontype{"primary"}key"out"onClick{async ()>{const ExportJsonExcel require("js-export-excel");const datas selectedRowsState //确保勾到的数据是一个列表&#xff0c;列表中每个值是字典const option {};const dataTable […

mac 修改启动图图标数量

调整每行显示图标数量&#xff1a; defaults write com.apple.dock springboard-rows -int 7 调整每列显示的数量 defaults write com.apple.dock springboard-columns -int 8 最后重置一下启动台 defaults write com.apple.dock ResetLaunchPad -bool TRUE;killall Dock 其…

Go使用SIMD指令——以string转为整数为例

本文Go使用SIMD指令采用如下方式&#xff1a; C编写对应的程序clang编译成汇编c2goasm将上述生成的汇编转为go的汇编 准备工具 clang。直接使用apt-get install clang安装即可c2goasm。 go get -u github.com/minio/c2goasm来进行安装asm2plan9s。 go get -u github.com/min…

【算法】递归+深搜+哈希表:889.根据前序和后序遍历构造二叉树

目录 1、题目链接 相似题目: 2、题目 ​3、解法&#xff08;针对无重复值&#xff0c;哈希表递归&#xff09; 函数头-----找出重复子问题 函数体---解决子问题 4、代码 1、题目链接 889.根据前序和后序遍历构造二叉树&#xff08;LeetCode&#xff09; 相似题目: 105.…

【矩阵的大小和方向的分解】

“大小”&#xff1a;在特征值分解和奇异值分解中&#xff0c;矩阵的“大小”通常由特征值或者奇异值表示&#xff0c;它们描述了矩阵在不同方向上拉伸或压缩的程度。“方向”&#xff1a;特征向量和奇异值分解中的方向矩阵 ( U ) 和 ( V ) 则描述了矩阵作用下空间中各个方向的…

【AIGC】如何充分利用ChatGPT:有效提示框架与基本规则

概述 在使用ChatGPT进行内容创作时&#xff0c;遵循结构化的提示框架和基本规则可以显著提升AI响应的质量。本文探讨了五种结构化的提示框架&#xff0c;并详细介绍了基本规则和进阶技巧&#xff0c;帮助您更有效地与ChatGPT互动。 基础规则 规则1&#xff1a;指令放在开头&…

高级信号完整性

高级信号完整性&#xff0c;2022年版&#xff0c;1473页&#xff0c;24h秒发 内容庞大&#xff0c;都是新的内容、架构 QS排名100内的美国高校课件 发货内容&#xff1a; 29个分章节PDF 1个汇总PDF&#xff0c;1473页 点击获取 课程首先对电磁学进行了回顾。随后&#xff0c;…

yelp数据集上识别潜在的热门商家

yelp数据集是研究B2C业态的一个很好的数据集&#xff0c;要识别潜在的热门商家是一个多维度的分析过程&#xff0c;涉及用户行为、商家特征和社区结构等多个因素。从yelp数据集里我们可以挖掘到下面信息有助于识别热门商家 用户评分和评论分析 评分均值: 商家的平均评分是反映其…

qt QDataStream详解

1. 概述 QDataStream是Qt框架中的一个核心类&#xff0c;主要用于处理二进制数据的序列化和反序列化。它提供了高效、跨平台的方式&#xff0c;将C数据结构转化为字节流&#xff0c;便于在网络传输、持久化存储等场景下使用。QDataStream可以处理包括整数、浮点数、布尔值、字…

使用Spring Validation实现数据校验详解

目录 前言1. Spring Validation概述2. 配置Spring Validation2.1 引入依赖2.2 启用全局校验 3. 使用注解进行参数校验3.1 基本校验注解3.2 使用Pattern进行正则校验3.3 综合示例 4. 在控制器层应用校验4.1 方法参数校验4.2 自定义错误处理 5. 高级应用&#xff1a;自定义校验注…

链表(C 语言)

目录 一、链表的概念1. 链表的结构2. 链表的分类3. 链表的优势 二、链表的实现1. 无头单项非循环链表的实现1.1 代码说明 2. 带头双向循环链表的实现2.1 代码说明 三、链表和顺序表的区别四、链表总结 一、链表的概念 链表是一种顺序表&#xff0c;它由一个一个的节点组成&…

写文件回前端进行下载,报错:原因:CORS 头缺少 ‘Access-Control-Allow-Origin‘)

后端写文件返回前端&#xff0c;出现该错误。 解决 设置允许跨域 response.setHeader("Access-Control-Allow-Origin", "*"); 代码 后端 public void exportTemplate(HttpServletResponse response) { ArrayList<ActiveGifts> activeGifts new…

关注AI技术的应用前景,抓住未来科技发展的机遇!

在当今这个快速发展的时代&#xff0c;人工智能&#xff08;AI&#xff09;技术正以惊人的速度改变着我们的生活和工作方式。无论是在医疗、金融、教育还是制造业&#xff0c;AI的应用都在不断扩展&#xff0c;带来前所未有的机遇和挑战。关注AI技术的应用前景&#xff0c;不仅…

QinQ的基础实验

拓扑 命令 LSW1 [LSW1]vlan batch 2 3 4 Info: This operation may take a few seconds. Please wait for a moment...done. [LSW1]interface g0/0/1 [LSW1-GigabitEthernet0/0/1]port link-type hybrid [LSW1-GigabitEthernet0/0/1]port hybrid untagged vlan 2 3 [LSW…

python-读写Excel:openpyxl-(4)下拉选项设置

使用openpyxl库的DataValidation对象方法可添加下拉选择列表。 DataValidation参数说明&#xff1a; type&#xff1a; 数据类型("whole", "decimal", "list", "date", "time", "textLength", "custom"…

Elasticsearch中时间字段格式用法详解

Elasticsearch中时间字段格式用法详解 攻城狮Jozz关注IP属地: 北京 2024.03.18 16:27:51字数 758阅读 2,571 Elasticsearch&#xff08;简称ES&#xff09;是一个基于Lucene构建的开源、分布式、RESTful搜索引擎。它提供了全文搜索、结构化搜索以及分析等功能&#xff0c;广泛…

【JavaEE初阶 — 多线程】Thread的常见构造方法&属性

目录 Thread类的属性 1.Thread 的常见构造方法 2.Thread 的几个常见属性 2.1 前台线程与后台线程 2.2 setDaemon() 2.3 isAlive() Thread类的属性 Thread 类是JVM 用来管理线程的一个类&#xff0c;换句话说&#xff0c;每个线程都有一个唯一的Thread 对象与之关联&am…

论文阅读笔记:DRCT: Saving Image Super-Resolution away from Information Bottleneck

论文阅读笔记&#xff1a;DRCT: Saving Image Super-Resolution away from Information Bottleneck 1 背景1.1 问题1.2 本文提出的方法 2 创新点3 方法4 模块4.1 问题描述4.2 深度特征提取模块4.3 同任务渐进式训练策略 5 效果5.1 和SOTA方法对比 论文&#xff1a;https://arxi…