PCL 点云配准-4PCS算法(粗配准)

目录

一、概述

1.1原理

1.2实现步骤

1.3应用场景

二、代码实现

2.1关键函数

2.1.1 加载点云数据

2.1.2 执行4PCS粗配准

2.1.3 可视化源点云、目标点云和配准结果

2.2完整代码

三、实现效果

3.1原始点云

3.2配准后点云


PCL点云算法汇总及实战案例汇总的目录地址链接:

PCL点云算法与项目实战案例汇总(长期更新)


一、概述

        4PCS(四点一致集)算法是一种用于点云配准的粗配准方法。该算法通过寻找目标点云和源点云之间具有几何约束的四点集合进行匹配,继而估计出变换矩阵。4PCS 算法具有较好的抗噪性和计算效率,适用于较大尺度的点云配准场景。

1.1原理

4PCS 算法通过以下步骤进行粗配准:

  1. 点云采样:从源点云和目标点云中采样若干点,形成四点集合。
  2. 几何一致性验证:计算这四个点在两个点云中的相对距离,通过几何一致性约束找到符合要求的四点集合。
  3. 估计变换矩阵:使用一致的四点集合,计算源点云到目标点云的变换矩阵。
  4. 应用变换矩阵:将计算得到的变换矩阵应用到源点云上,使其与目标点云对齐。

配准结果的质量依赖于:

  • 重叠率:设置源点云和目标点云的近似重叠率。
  • 采样点数量:设置参与匹配的采样点数量。
  • 精度参数 Delta:控制配准的精度,通过对配准点云的稀疏化进行加速。

1.2实现步骤

  1. 加载源点云和目标点云。
  2. 设置4PCS配准参数:包括近似重叠率、采样点数量、精度参数等。
  3. 执行4PCS粗配准:通过设置参数执行粗配准,得到变换矩阵。
  4. 应用变换矩阵:将源点云应用变换矩阵对齐至目标点云。
  5. 可视化结果:将源点云、目标点云以及对齐后的点云进行可视化对比。

1.3应用场景

  1. 粗配准阶段:4PCS 可以用于点云配准的初步阶段,提供较为快速的粗略对齐结果,后续可以使用更精细的算法(如ICP)进行精配准。
  2. 多场景拼接:在多视角点云场景下,4PCS 可以帮助快速匹配不同视角的点云数据。
  3. 点云地图生成:在SLAM(同步定位与地图构建)中,4PCS 可以用于不同帧之间的点云匹配与对齐。

二、代码实现

2.1关键函数

2.1.1 加载点云数据

void loadPointClouds(pcl::PointCloud<pcl::PointXYZ>::Ptr& source_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr& target_cloud)
{if (pcl::io::loadPCDFile<pcl::PointXYZ>("hand_trans.pcd", *target_cloud) == -1) {PCL_ERROR("读取目标点云失败 \n");}if (pcl::io::loadPCDFile<pcl::PointXYZ>("hand.pcd", *source_cloud) == -1) {PCL_ERROR("读取源点云失败 \n");}
}

2.1.2 执行4PCS粗配准

void perform4PCSRegistration(pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr aligned_cloud, Eigen::Matrix4f& transformation_matrix)
{pcl::registration::FPCSInitialAlignment<pcl::PointXYZ, pcl::PointXYZ> fpcs;fpcs.setInputSource(source_cloud);fpcs.setInputTarget(target_cloud);fpcs.setApproxOverlap(0.7);         // 设置近似重叠率fpcs.setDelta(0.01);                // 精度参数fpcs.setNumberOfSamples(100);       // 采样点数量fpcs.align(*aligned_cloud);         // 执行配准transformation_matrix = fpcs.getFinalTransformation(); // 获取变换矩阵
}

2.1.3 可视化源点云、目标点云和配准结果

// 可视化源点云、目标点云和配准结果
void visualizePointClouds(pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud)
{boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("Point Cloud Registration Viewer"));viewer->setBackgroundColor(1.0, 1.0, 1.0);  // 设置背景颜色为黑色pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> target_color(target_cloud, 255, 0, 0);viewer->addPointCloud(target_cloud, target_color, "target cloud"); // 目标点云(红色)pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> source_color(source_cloud, 0, 0, 255);viewer->addPointCloud(source_cloud, source_color, "source cloud"); // 源点云(蓝色)viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "target cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "source cloud");while (!viewer->wasStopped()) {viewer->spinOnce();}
}

2.2完整代码

#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/registration/ia_fpcs.h>
#include <pcl/console/time.h>
#include <boost/thread/thread.hpp>
#include <pcl/visualization/pcl_visualizer.h>// 加载点云数据
void loadPointClouds(pcl::PointCloud<pcl::PointXYZ>::Ptr& source_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr& target_cloud)
{if (pcl::io::loadPCDFile<pcl::PointXYZ>("hand_trans.pcd", *target_cloud) == -1) {PCL_ERROR("读取目标点云失败 \n");}if (pcl::io::loadPCDFile<pcl::PointXYZ>("hand.pcd", *source_cloud) == -1) {PCL_ERROR("读取源点云失败 \n");}
}// 执行4PCS粗配准
void perform4PCSRegistration(pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr aligned_cloud, Eigen::Matrix4f& transformation_matrix)
{pcl::registration::FPCSInitialAlignment<pcl::PointXYZ, pcl::PointXYZ> fpcs;fpcs.setInputSource(source_cloud);fpcs.setInputTarget(target_cloud);fpcs.setApproxOverlap(0.7);         // 设置近似重叠率fpcs.setDelta(0.01);                // 精度参数fpcs.setNumberOfSamples(1000);       // 采样点数量fpcs.align(*aligned_cloud);         // 执行配准transformation_matrix = fpcs.getFinalTransformation(); // 获取变换矩阵
}// 可视化源点云、目标点云和配准结果
// 可视化源点云、目标点云和配准结果
void visualizePointClouds(pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud, pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud)
{boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("Point Cloud Registration Viewer"));viewer->setBackgroundColor(1.0, 1.0, 1.0);  // 设置背景颜色为黑色pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> target_color(target_cloud, 255, 0, 0);viewer->addPointCloud(target_cloud, target_color, "target cloud"); // 目标点云(红色)pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> source_color(source_cloud, 0, 0, 255);viewer->addPointCloud(source_cloud, source_color, "source cloud"); // 源点云(蓝色)viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "target cloud");viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "source cloud");while (!viewer->wasStopped()) {viewer->spinOnce();}
}int main(int argc, char** argv)
{pcl::console::TicToc time;pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud(new pcl::PointCloud<pcl::PointXYZ>);pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud(new pcl::PointCloud<pcl::PointXYZ>);loadPointClouds(source_cloud, target_cloud);pcl::PointCloud<pcl::PointXYZ>::Ptr aligned_cloud(new pcl::PointCloud<pcl::PointXYZ>);Eigen::Matrix4f transformation_matrix;time.tic();perform4PCSRegistration(source_cloud, target_cloud, aligned_cloud, transformation_matrix);cout << "FPCS配准用时: " << time.toc() << " ms" << endl;cout << "变换矩阵:" << transformation_matrix << endl;//显示原始点云visualizePointClouds(source_cloud, target_cloud);//显示配准后点云visualizePointClouds(target_cloud, aligned_cloud);return 0;
}

三、实现效果

3.1原始点云

3.2配准后点云

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/56609.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

猫分鱼干 -算法题解

题目 假如有一群猫排成一行&#xff0c;要分配鱼干&#xff0c;每一只猫都有一个等级值。你作为管理员有很多鱼干但是需要按下边的分配制度分配&#xff1a; 1. 每一只猫至少要分配一斤鱼干&#xff0c;鱼干分配最小单位是斤&#xff0c;必须保证是整数。 2. 猫比他们邻居有更高…

沥川的算法学习笔记:基础算法(1)----快速排序

1.快速排序 快速排序是一种高效的排序算法&#xff0c;它利用了分治的思想。快速排序的基本思想是选择一个基准元素&#xff0c;将数组分成两个子数组&#xff0c;其中一个子数组的元素都小于等于基准元素&#xff0c;另一个子数组的元素都大于等于基准元素&#xff0c;然后对这…

JavaCove部署文档

1. 基础配置 1.1服务器&#xff1a; 2 核 2G 1.2. 一个域名 1.3. 项目地址&#xff1a; gitee:https://gitee.com/guo-_jun/JavaCove github:https://github.com/nansheng1212/JavaCove 2. CentOS 安装 Docker 官方网站上有各种环境下的 安装指南&#xff0c;这里主要介绍…

jquery实现点击菜单实现高德地图定位点与数据展示联动效果

&#x1f34a;jquery实现点击菜单实现高德地图定位点与数据展示联动效果 版本介绍&#xff1a; jQuery v3.7.1高德地图JS API 2.0 代码仓库 ⭐ Gitee&#xff1a;实现点击菜单实现高德地图定位点与数据展示联动效果 1.启动说明 &#x1f4d4; 推荐VS Code编辑器插件Live Ser…

论文笔记:RelationPrompt :Zero-Shot Relation Triplet Extraction

论文来源: ACL Findings 2022 论文链接:https://arxiv.org/pdf/2203.09101.pdf 论文代码:http://github.com/declare-lab/RelationPrompt 本篇论文是由阿里达摩院自然语言智能实验室于2022年发表的关于零样本关系抽取的顶会论文,本篇博客将记录我在阅读过程中的一些笔记…

jmeter中对于有中文内容的csv文件怎么保存

jmeter的功能很强大&#xff0c;但是细节处没把握好就得不到预期的结果。今天来讲讲有中文内容的csv文件的参数化使用中需要注意的事项。 对于有中文内容&#xff0c;涉及到编码格式&#xff0c;为了让jmeter能正确地读取csv文件中的中文&#xff0c;需要把文件转码为UTF-8BOM…

OPENSSL-2023/11/10学习记录-C/C++对称分组加密DES

对称分组加密常用算法&#xff1a; DES 3DES AES 国密SM4 对称分组加密应用场景&#xff1a; 文件或者视频加密 加密比特币私钥 消息或者配置项加密 SSL通信加密 对称分组加密 使用异或实现一个简易的对称加密算法 A明文 B秘钥 AB密文AB (AB)B A 密码补全和初始化 数…

数据操作学习

1.导入torch。虽然被称为PyTorch&#xff0c;但应导入torch而不是pytorch import torch 2.张量表示一个数值组成的数组&#xff0c;这个数组可能有多个维度 xtorch.arange(12)x 3.通过张量的shape属性来访问张量的形状和张量中元素的总数 x.shape x.numel() 4.要改变张量的形…

LangGraph - Hierarchical Agent Teams

本文翻译整理自 Hierarchical Agent Teams https://langchain-ai.github.io/langgraph/tutorials/multi_agent/hierarchical_agent_teams/ 文章目录 一、前言二、设置三、创建工具四、Helper Utilities五、定义代理 Team研究 Team文档写作Team 六、添加图层 一、前言 在前面的…

【高阶数据结构】揭开红黑树‘恶魔’的面具:深度解析底层逻辑

高阶数据结构相关知识点可以通过点击以下链接进行学习一起加油&#xff01;二叉搜索树AVL树 大家好&#xff0c;我是店小二&#xff0c;欢迎来到本篇内容&#xff01;今天我们将一起探索红黑树的工作原理及部分功能实现。红黑树的概念相对抽象&#xff0c;但只要我们一步步深入…

Java使用HttpClient5实现发送HTTP请求

1、HttpClient5 的介绍 HttpClient5 是 Apache HttpComponents 项目中的一个重要组件&#xff0c;它是一个功能齐全且高度可定制的 HTTP 客户端库&#xff0c;专门用于发送 HTTP 请求、处理 HTTP 响应并支持各种 HTTP 协议特性。 以下是对 HttpClient5 的详细介绍&#xff1a…

部署Qwen2.5-7b大模型详解

部署Qwen2.5-7b大模型详解 本文参考教程&#xff1a;https://qwen.readthedocs.io/en/latest/getting_started/quickstart.html 下载模型 https://modelscope.cn/organization/qwen 搜索 qwen2.5-7b 可以看到它提供了六个模型&#xff0c;以满足不同的需求&#xff0c;从下…

【RoadRunner】自动驾驶模拟3D场景构建 | 软件简介与视角控制

&#x1f4af; 欢迎光临清流君的博客小天地&#xff0c;这里是我分享技术与心得的温馨角落 &#x1f4af; &#x1f525; 个人主页:【清流君】&#x1f525; &#x1f4da; 系列专栏: 运动控制 | 决策规划 | 机器人数值优化 &#x1f4da; &#x1f31f;始终保持好奇心&…

【MATLAB代码,带TDOA数据导入】TDOA三维空间的位置(1主锚点、3副锚点),多个时间点、输出位置的坐标

TDOA介绍 TDOA&#xff08;到达时间差&#xff09;是一种用于定位和跟踪信号源的技术&#xff0c;常用于无线通信、导航和雷达系统。它通过测量信号到达不同接收器的时间差&#xff0c;来计算信号源的位置。 基本原理 TDOA的基本原理是利用多个接收器&#xff08;或锚点&…

Power BI - 设置Waterfall Chart第一个Pillar的颜色

1.简单介绍 有的用户可能会单独设置Column Chart&#xff08;条形图&#xff09;的第一个柱子的颜色&#xff0c;如下图所示&#xff0c; 这种其实可以通过Column Chart的Conditional formating进行设置&#xff0c; - SWICH SELECTEDVALUE 或者也可以直接对单独的Column进行…

用户界面设计:视觉美学与交互逻辑的融合

1、什么是用户界面 用户界面&#xff08;UI&#xff09;是人与机器之间沟通的桥梁&#xff0c;同时也是用户体验&#xff08;UX&#xff09;的重要组成部分。用户界面设计包括两个核心要素&#xff1a;视觉设计&#xff08;即产品的外观和感觉&#xff09;和交互设计&#xff…

CSS 入门

1. CSS 1.1 概念 CSS&#xff08;Cascading Style Sheet&#xff09;&#xff0c;层叠样式表&#xff0c;用于控制页面的样式 CSS 能够对网页中元素位置的排版进行像素级精确控制&#xff0c;实现美化页面的效果&#xff0c;能够做到页面的样式和结构分离&#xff08;类似于…

【数字图像处理】第5章 图像空域增强方法

上理考研周导师的哔哩哔哩频道 我在频道里讲课哦 目录 5.1 图像噪声 相关概念 ①图像噪声的产生 ② 图像噪声分类 ③ 图像噪声特点 5.2 图像增强方法分类 ①图像增强概念 ②图像增强目的 ③图像增强技术方法: 5.3 基于灰度变换的图像增强 1. 概述: 2. 灰度变换…

十大云手机排行榜:哪个云手机更好用?

近些年&#xff0c;市场上涌现出许多云手机产品&#xff0c;不同产品适合的应用场景也各不相同。在选用云手机之前&#xff0c;企业和个人用户需要了解它们的功能、特点以及适用的场景。本文将对当前主流的云手机进行对比&#xff0c;帮助大家挑选出最适合的云手机产品。 1. 红…

【数据结构与算法】之链表详解

链表是一种常用的数据结构&#xff0c;它是一种线性数据结构&#xff0c;但与数组不同&#xff0c;它并非连续存储数据&#xff0c;而是通过指针将数据节点连接起来。每个节点都包含数据域和指向下一个节点的指针域。这种结构赋予链表独特的优势和局限性&#xff0c;使其在某些…