YOLO11改进|注意力机制篇|引入反向残差移动快iRMB

在这里插入图片描述

目录

    • 一、【iRMB】注意力机制
      • 1.1【iRMB】注意力介绍
      • 1.2【iRMB】核心代码
    • 二、添加【iRMB】注意力机制
      • 2.1STEP1
      • 2.2STEP2
      • 2.3STEP3
      • 2.4STEP4
    • 三、yaml文件与运行
      • 3.1yaml文件
      • 3.2运行成功截图

一、【iRMB】注意力机制

1.1【iRMB】注意力介绍

在这里插入图片描述

反向残差移动快iRMB结构如下所示,让我们简单分析一下其工作流程和优势

  • 工作流程:
  • 1x1卷积层(BottleNeck 结构的压缩和扩展):iRMB首先通过一个 1x1卷积层 对输入通道进行扩展和压缩。在标准的BottleNeck结构中,1x1卷积的作用是通过减少或增加通道数,减少计算复杂度的同时保留足够的特征表示能力。
  • 高效算子(Efficient Operator)引入:iRMB中引入了不同的高效算子,例如 深度卷积(DWConv)、窗口注意力机制(Window Transformer) 等。这些算子可以根据需要灵活选择。相比传统卷积操作,深度卷积可以降低计算成本,提升网络效率。根据应用场景,iRMB会选择合适的高效算子进行处理,起到加速推理和减少计算量的作用。
  • 1x1卷积层恢复通道维度:接下来,经过算子操作后,输出再次经过一个 1x1卷积层,将特征图的维度还原到输入的通道数。这一阶段主要是恢复原始的特征维度,同时对特征图进行再整合。
  • 跳跃连接(Skip Connection):最后,iRMB会使用 跳跃连接 机制将输入与输出进行相加。跳跃连接是ResNet结构中常用的手段,它可以有效避免梯度消失问题,并且可以将低层特征直接传递到高层。
  • 优势:
  • 高效性:iRMB通过使用高效算子(如深度卷积或窗口注意力机制),大幅降低了计算成本,同时保留了较强的特征提取能力。这使得iRMB在性能和效率上具有显著优势,尤其适用于移动设备等对计算资源敏感的场景。
  • 灵活性:iRMB的一个显著优势在于其 灵活性,可以根据需求选择不同的高效算子,如深度卷积、注意力机制等。这种模块化设计使得iRMB能够适应不同的任务和应用场景,如分类、检测和分割等。
  • 增强的特征表达:通过使用1x1卷积层和高效算子组合,iRMB可以在较少的计算量下保持良好的特征表达能力。跳跃连接的加入也帮助保留了更多底层信息,进一步提升了模型的表现力。
  • 易于扩展:iRMB不仅能够在单个任务中表现优异,还能方便地扩展到其他任务,例如分类、检测和分割等多种任务。这种通用模块可以使得模型在不同任务之间共享特征,提高了模型的泛化能力。
    在这里插入图片描述

1.2【iRMB】核心代码

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from einops import rearrange
from timm.models.efficientnet_blocks import SqueezeExcite
from timm.models.layers import DropPath__all__ = ['iRMB', 'C2f_iRMB']inplace = True
class LayerNorm2d(nn.Module):def __init__(self, normalized_shape, eps=1e-6, elementwise_affine=True):super().__init__()self.norm = nn.LayerNorm(normalized_shape, eps, elementwise_affine)def forward(self, x):x = rearrange(x, 'b c h w -> b h w c').contiguous()x = self.norm(x)x = rearrange(x, 'b h w c -> b c h w').contiguous()return xdef get_norm(norm_layer='in_1d'):eps = 1e-6norm_dict = {'none': nn.Identity,'in_1d': partial(nn.InstanceNorm1d, eps=eps),'in_2d': partial(nn.InstanceNorm2d, eps=eps),'in_3d': partial(nn.InstanceNorm3d, eps=eps),'bn_1d': partial(nn.BatchNorm1d, eps=eps),'bn_2d': partial(nn.BatchNorm2d, eps=eps),# 'bn_2d': partial(nn.SyncBatchNorm, eps=eps),'bn_3d': partial(nn.BatchNorm3d, eps=eps),'gn': partial(nn.GroupNorm, eps=eps),'ln_1d': partial(nn.LayerNorm, eps=eps),'ln_2d': partial(LayerNorm2d, eps=eps),}return norm_dict[norm_layer]def get_act(act_layer='relu'):act_dict = {'none': nn.Identity,'relu': nn.ReLU,'relu6': nn.ReLU6,'silu': nn.SiLU}return act_dict[act_layer]class ConvNormAct(nn.Module):def __init__(self, dim_in, dim_out, kernel_size, stride=1, dilation=1, groups=1, bias=False,skip=False, norm_layer='bn_2d', act_layer='relu', inplace=True, drop_path_rate=0.):super(ConvNormAct, self).__init__()self.has_skip = skip and dim_in == dim_outpadding = math.ceil((kernel_size - stride) / 2)self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride, padding, dilation, groups, bias)self.norm = get_norm(norm_layer)(dim_out)self.act = get_act(act_layer)(inplace=inplace)self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity()def forward(self, x):shortcut = xx = self.conv(x)x = self.norm(x)x = self.act(x)if self.has_skip:x = self.drop_path(x) + shortcutreturn xclass iRMB(nn.Module):def __init__(self, dim_in, norm_in=True, has_skip=True, exp_ratio=1.0, norm_layer='bn_2d',act_layer='relu', v_proj=True, dw_ks=3, stride=1, dilation=1, se_ratio=0.0, dim_head=8, window_size=7,attn_s=True, qkv_bias=False, attn_drop=0., drop=0., drop_path=0., v_group=False, attn_pre=False):super().__init__()dim_out = dim_inself.norm = get_norm(norm_layer)(dim_in) if norm_in else nn.Identity()dim_mid = int(dim_in * exp_ratio)self.has_skip = (dim_in == dim_out and stride == 1) and has_skipself.attn_s = attn_sif self.attn_s:assert dim_in % dim_head == 0, 'dim should be divisible by num_heads'self.dim_head = dim_headself.window_size = window_sizeself.num_head = dim_in // dim_headself.scale = self.dim_head ** -0.5self.attn_pre = attn_preself.qk = ConvNormAct(dim_in, int(dim_in * 2), kernel_size=1, bias=qkv_bias, norm_layer='none',act_layer='none')self.v = ConvNormAct(dim_in, dim_mid, kernel_size=1, groups=self.num_head if v_group else 1, bias=qkv_bias,norm_layer='none', act_layer=act_layer, inplace=inplace)self.attn_drop = nn.Dropout(attn_drop)else:if v_proj:self.v = ConvNormAct(dim_in, dim_mid, kernel_size=1, bias=qkv_bias, norm_layer='none',act_layer=act_layer, inplace=inplace)else:self.v = nn.Identity()self.conv_local = ConvNormAct(dim_mid, dim_mid, kernel_size=dw_ks, stride=stride, dilation=dilation,groups=dim_mid, norm_layer='bn_2d', act_layer='silu', inplace=inplace)self.se = SqueezeExcite(dim_mid, rd_ratio=se_ratio, act_layer=get_act(act_layer)) if se_ratio > 0.0 else nn.Identity()self.proj_drop = nn.Dropout(drop)self.proj = ConvNormAct(dim_mid, dim_out, kernel_size=1, norm_layer='none', act_layer='none', inplace=inplace)self.drop_path = DropPath(drop_path) if drop_path else nn.Identity()def forward(self, x):shortcut = xx = self.norm(x)B, C, H, W = x.shapeif self.attn_s:# paddingif self.window_size <= 0:window_size_W, window_size_H = W, Helse:window_size_W, window_size_H = self.window_size, self.window_sizepad_l, pad_t = 0, 0pad_r = (window_size_W - W % window_size_W) % window_size_Wpad_b = (window_size_H - H % window_size_H) % window_size_Hx = F.pad(x, (pad_l, pad_r, pad_t, pad_b, 0, 0,))n1, n2 = (H + pad_b) // window_size_H, (W + pad_r) // window_size_Wx = rearrange(x, 'b c (h1 n1) (w1 n2) -> (b n1 n2) c h1 w1', n1=n1, n2=n2).contiguous()# attentionb, c, h, w = x.shapeqk = self.qk(x)qk = rearrange(qk, 'b (qk heads dim_head) h w -> qk b heads (h w) dim_head', qk=2, heads=self.num_head,dim_head=self.dim_head).contiguous()q, k = qk[0], qk[1]attn_spa = (q @ k.transpose(-2, -1)) * self.scaleattn_spa = attn_spa.softmax(dim=-1)attn_spa = self.attn_drop(attn_spa)if self.attn_pre:x = rearrange(x, 'b (heads dim_head) h w -> b heads (h w) dim_head', heads=self.num_head).contiguous()x_spa = attn_spa @ xx_spa = rearrange(x_spa, 'b heads (h w) dim_head -> b (heads dim_head) h w', heads=self.num_head, h=h,w=w).contiguous()x_spa = self.v(x_spa)else:v = self.v(x)v = rearrange(v, 'b (heads dim_head) h w -> b heads (h w) dim_head', heads=self.num_head).contiguous()x_spa = attn_spa @ vx_spa = rearrange(x_spa, 'b heads (h w) dim_head -> b (heads dim_head) h w', heads=self.num_head, h=h,w=w).contiguous()# unpaddingx = rearrange(x_spa, '(b n1 n2) c h1 w1 -> b c (h1 n1) (w1 n2)', n1=n1, n2=n2).contiguous()if pad_r > 0 or pad_b > 0:x = x[:, :, :H, :W].contiguous()else:x = self.v(x)x = x + self.se(self.conv_local(x)) if self.has_skip else self.se(self.conv_local(x))x = self.proj_drop(x)x = self.proj(x)x = (shortcut + self.drop_path(x)) if self.has_skip else xreturn xdef autopad(k, p=None, d=1):  # kernel, padding, dilation"""Pad to 'same' shape outputs."""if d > 1:k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-sizeif p is None:p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-padreturn pclass Conv(nn.Module):"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""default_act = nn.SiLU()  # default activationdef __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):"""Initialize Conv layer with given arguments including activation."""super().__init__()self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)self.bn = nn.BatchNorm2d(c2)self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()def forward(self, x):"""Apply convolution, batch normalization and activation to input tensor."""return self.act(self.bn(self.conv(x)))def forward_fuse(self, x):"""Perform transposed convolution of 2D data."""return self.act(self.conv(x))class Bottleneck(nn.Module):"""Standard bottleneck."""def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):"""Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, andexpansion."""super().__init__()c_ = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, c_, k[0], 1)self.cv2 = Conv(c_, c2, k[1], 1, g=g)self.add = shortcut and c1 == c2self.iRMB = iRMB(c2)def forward(self, x):"""'forward()' applies the YOLO FPN to input data."""return x + self.iRMB(self.cv2(self.cv1(x))) if self.add else self.iRMB(self.cv2(self.cv1(x)))class C2f_iRMB(nn.Module):"""Faster Implementation of CSP Bottleneck with 2 convolutions."""def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):"""Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,expansion."""super().__init__()self.c = int(c2 * e)  # hidden channelsself.cv1 = Conv(c1, 2 * self.c, 1, 1)self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))def forward(self, x):"""Forward pass through C2f layer."""y = list(self.cv1(x).chunk(2, 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))def forward_split(self, x):"""Forward pass using split() instead of chunk()."""y = list(self.cv1(x).split((self.c, self.c), 1))y.extend(m(y[-1]) for m in self.m)return self.cv2(torch.cat(y, 1))if __name__ == "__main__":# Generating Sample imageimage_size = (1, 64, 640, 640)image = torch.rand(*image_size)# Modelmodel = iRMB(64, 64)out = model(image)print(len(out))

二、添加【iRMB】注意力机制

2.1STEP1

首先找到ultralytics/nn文件路径下新建一个Add-module的python文件包【这里注意一定是python文件包,新建后会自动生成_init_.py】,如果已经跟着我的教程建立过一次了可以省略此步骤,随后新建一个iRMB.py文件并将上文中提到的注意力机制的代码全部粘贴到此文件中,如下图所示在这里插入图片描述

2.2STEP2

在STEP1中新建的_init_.py文件中导入增加改进模块的代码包如下图所示在这里插入图片描述

2.3STEP3

找到ultralytics/nn文件夹中的task.py文件,在其中按照下图添加在这里插入图片描述

2.4STEP4

定位到ultralytics/nn文件夹中的task.py文件中的def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)函数添加如图代码,【如果不好定位可以直接ctrl+f搜索定位】

在这里插入图片描述

三、yaml文件与运行

3.1yaml文件

以下是添加【iRMB】注意力机制在Backbone中的yaml文件,大家可以注释自行调节,效果以自己的数据集结果为准

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, Conv, [64, 3, 2]] # 0-P1/2- [-1, 1, Conv, [128, 3, 2]] # 1-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 3-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 5-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 9- [-1, 1, iRMB, []]- [-1, 2, C2PSA, [1024]] # 10# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 6], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 13- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 4], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 14], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 11], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)- [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)

以上添加位置仅供参考,具体添加位置以及模块效果以自己的数据集结果为准

3.2运行成功截图

在这里插入图片描述

这里注意到他的参数量有点大,其实不是很建议用这个模块了,因为故事不好写,不过也可以试一下

OK 以上就是添加【iRMB】注意力机制的全部过程了,后续将持续更新尽情期待

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/55602.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Canvas与标牌】盾形银底红带Best Quality Premium标牌

【成图】 【代码】 <!DOCTYPE html> <html lang"utf-8"> <meta http-equiv"Content-Type" content"text/html; charsetutf-8"/> <head><title>BestQulityPremium金属牌重制版Draft2</title><style type&…

雷池+frp 批量设置proxy_protocol实现真实IP透传

需求 内网部署safeline&#xff0c;通过frp让外网访问内部web网站服务&#xff0c;让safeline记录真实外网攻击IP safeline 跟 frp都部署在同一台服务器&#xff1a;192.168.2.103 frp client 配置 frpc只需要在https上添加transport.proxyProtocolVersion "v2"即…

旅游管理智能化转型:SpringBoot系统设计与实现

第四章 系统设计 4.1系统结构设计 对于本系统的开发设计&#xff0c;先自上向下&#xff0c;将一个完整的系统分解成许多个小系统来进行实现&#xff1b;再自下向上&#xff0c;将所有的“零件”组装成一个大的、完整的系统。因此这里面的许多个小功能块都要对将要实现的功能进…

Pikachu-Sql-Inject - 基于时间的盲注

基于时间的盲注&#xff1a; 就是前端的基于time 的盲注&#xff0c;什么错误信息都看不到&#xff0c;但是还可以通过特定的输入&#xff0c;判断后台的执行时间&#xff0c;从而确定注入。 mysql 里函数sleep() 是延时的意思&#xff0c;sleep(10)就是数据库延时10 秒返回内…

Android Framework AMS(02)AMS启动及相关初始化5-8

该系列文章总纲链接&#xff1a;专题总纲目录 Android Framework 总纲 本章关键点总结 & 说明&#xff1a; 说明&#xff1a;本章节主要涉及systemserver启动AMS及初始化AMS相关操作。同时由于该部分内容过多&#xff0c;因此拆成2个章节&#xff0c;本章节是第二章节&…

18734 拓扑排序

### 思路 1. **建模问题**&#xff1a;将课程和依赖关系建模为有向图&#xff0c;其中课程是节点&#xff0c;依赖关系是有向边。 2. **选择算法**&#xff1a;使用拓扑排序算法来确定课程的学习顺序。由于需要确保输出唯一性&#xff0c;同等条件下编号小的课程排在前面&…

将自己写好的项目部署在自己的云服务器上

准备工作 这里呢我要下载的终端软件是Xshell 如图&#xff1a; 自己准备好服务器&#xff0c;我这里的是阿里云的服务器&#xff0c; 如图&#xff1a; 这两个准备好之后呢&#xff0c;然后对我们的项目进行打包。 如图&#xff1a; 这里双击打包就行了。 找到自己打成jar包…

桌面时钟哪个好?今年最热门的桌面时钟主题

桌面时钟可以让我们更方便的知道当前的时间&#xff0c;日期&#xff0c;因为它非常直观的展示在桌面上&#xff0c;当我们需要看时间的时候&#xff0c;一眼就可以看到了&#xff0c;这是一个非常便捷的功能&#xff0c;我们一起来看下《芝麻时钟》&#xff08;下载地址&#…

停车位识别数据集 图片数量12416张YOLO,xml和txt标签都有; 2类类别:space-empty,space-occupied;

YOLO停车位识别 图片数量12416张&#xff0c;xml和txt标签都有&#xff1b; 2类类别&#xff1a;space-empty&#xff0c;space-occupied&#xff1b; 用于yolo&#xff0c;Python&#xff0c;目标检测&#xff0c;机器学习&#xff0c;人工智能&#xff0c;深度学习&#xff0…

vSAN06:ESA与OSA对比、ESA安装、新架构、工作方式、自动策略管理、原生快照、数据压缩、故障处理

目录 vSAN ESAvSAN ESA 安装ESA新架构ESA工作方式ESA自动策略管理自适应RAID5策略 原生快照支持数据压缩的改进ESA故障处理 vSAN ESA vSAN ESA 安装 流程和OSA完全一致&#xff0c;但要注意要勾选启用vSAN ESA ESA和OSA的底层架构不一样&#xff0c;但是UI上是一致的。 生产环…

【2024最新】华为HCIE认证考试流程

HCIE是华为认证体系中最高级别的ICT技术认证&#xff0c;表示通过认证的人具有ICT领域专业知识和丰富实践经验。 HCIE认证方向&#xff1a;最高认证级别HCIE的技术方向有13个 下面以HCIE-Datacom为例给大家介绍一下&#xff1a; HCIE-Datacom认证考试流程&#xff1a; 1.笔试…

Hive3.x版本调优总结

文章目录 第 1 章 Explain 查看执行计划&#xff08;重点&#xff09;1.1 创建测试用表1&#xff09;建大表、小表和 JOIN 后表的语句2&#xff09;分别向大表和小表中导入数据 1.2 基本语法1.3 案例实操 第 2 章 Hive 建表优化2.1 分区表2.1.1 分区表基本操作2.1.2 二级分区2.…

vmvare虚拟机centos 忘记超级管理员密码怎么办?

vmvare虚拟机centos 忘记超级管理员密码怎么办?如何重置密码呢? 一、前置操作 重启vmvare虚拟机的过程中,长按住Shift键 选择第一个的时候,按下按键 e 进入编辑状态。 然后就会进入到类似这个界面中。 在下方界面 添加 init=/bin/sh,然后按下Ctrl+x进行保存退出。 init=/bi…

本田汽车投资SiLC Technologies:携手共促自动驾驶技术新飞跃

SiLC Technologies获本田汽车投资:加速自动驾驶技术革新 近日,硅谷光子学初创公司SiLC Technologies宣布获得本田汽车的投资,这一合作标志着双方将共同推进自动驾驶技术领域的革新与发展。本田此次投资不仅体现了对SiLC Technologies技术实力的认可,也彰显了本田在自动驾驶…

昇思学习打卡营第31天|深度解密 CycleGAN 图像风格迁移:从草图到线稿的无缝转化

1. 简介 图像风格迁移是计算机视觉领域中的一个热门研究方向&#xff0c;其中 CycleGAN (循环对抗生成网络) 在无监督领域取得了显著的突破。与传统需要成对训练数据的模型如 Pix2Pix 不同&#xff0c;CycleGAN 不需要严格的成对数据&#xff0c;只需两类图片域数据&#xff0c…

IDEA:增加类注释模板和方法注释模板

文章目录 概要配置类注释模板配置方法模版 概要 配置类注释和方法注释 配置类注释模板 点击setting->Editor->File and Code Templates&#xff0c;然后找到Class&#xff0c;如下图&#xff1a; 注意勾掉Reformat according to style&#xff0c;否则会格式化。 注…

动态规划算法专题(四):子串、子数组系列

目录 1、最大子数组和 1.1 算法原理 1.2 算法代码 2、环形子数组的最大和 2.1 算法原理 2.2 算法代码 3、乘积最大子数组 3.1 算法原理 3.2 算法代码 4、乘积为正数的最长子数组长度 4.1 算法原理 4.2 算法代码 5、等差数列划分 5.1 算法原理 5.2 算法代码 6、…

COSPLAY大赛静态HTML网页模板源码

源码名称&#xff1a;COSPLAY大赛静态HTML网页模板 源码介绍&#xff1a;一款cosplay大赛HTML网页模板源码&#xff0c;过往参赛选手会自动从腾讯大赛获取&#xff0c;可用于cosplay大赛&#xff0c;漫展等。 需求环境&#xff1a;H5 下载地址&#xff1a; https://www.5188…

k8s的控制节点不能访问node节点容器的ip地址

master控制node服务器添加容器后,访问不了该node服务器容器的ip,只能在node服务器访问 排查后发现是k8s的master服务器和node节点的网址网段和k8s初始化时提示的ip网段不一致 我之前是192.168.137.50, 实际上master主机期望的是192.168.1.50 解决方案: 1.删除服务器后重建ma…

【api连接ChatGPT的最简单方式】

通过api连接ChatGPT的最简单方式 建立client 其中base_url为代理&#xff0c;若连接官网可省略&#xff1b;配置环境变量 from openai import OpenAI client OpenAI(base_url"https://api.chatanywhere.tech/v1" )或给出api和base_url client OpenAI(api_key&…