研一奖学金计划2024/9/23有感

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 前言
  • 一、需要认真上课的
    • 1.应用数理统计(开卷考试)
    • 2.最优化方法(开卷考试)
    • 3.跨文化交际(主题演讲20+课堂讨论20+我的东大视频配音10+课下论文20+知识问卷10)
    • 4.高级计算机系统结构(开卷考试+课上写回答)
  • 二、上课不用听的
    • 1.自然语言处理()
    • 2.新中特()
    • 3.信息检索()
  • 总结


前言

研一开学三个星期了难受的很多,不知道什么时候能安定下来扎下根。烦心事之一而且是花费时间最多的就是上课,选课多没有学习的时间(科研小白基础没有,向导师汇报学习心得就是见光死),讲得快听不懂(念ppt的老师居多,不念ppt也是听不懂,长此以往要坏事)还不能不去(有的说点名或者课上要交小作业)。

今天终于静下来想想为什么那么难受,就是因为想学分绩高了拿第二年的奖学金,但是发现听这些课和这些课考高分没有关系,每节课疲于奔命地听什么也听不懂什么也记不住,而且有的课根本不考试最后是交很水的大作业(别人都说水我不知道自己怎么样)。想学的听不懂是浪费了,不用听的还得去听也浪费了,开课后哪一天都没有什么进步。

开学前我朴素的想法是研究生的时间就分两块,一个是献给论文和给老师打工,另一个就是多方面打听好工作并做针对性的技能准备。第二点是更重要的。结果现在发现第一学期上课成了最花时间的了。

上课烦就是因为第二学年的奖学金,下面看看第二学年奖学金怎么评吧。
在这里插入图片描述

因为我没竞选班干部和研究生会(现在很后悔,当众发言的机会很少的)综测插差别人一大截,但作为无产人员至少得保底明年的二等奖学金。

图中可以看出,学位课2学分>学位课1学分>选修课2学分>选修课1学分。
在这里插入图片描述
在这里插入图片描述

先把选的课分个小类——

需要去认真上课的:

应用数理统计
最优化方法与理论
跨文化交际
高级计算机系统结构

需要去上课的但不用听(带电脑过去):

新中特、
自然语言处理
信息检索

不需要上课的:

分布式数据库
深度学习及其应用
体育

还没开课的:
科学精神、
新一代互联网技术
机器学习
现代密码学概论
自然辩证法概论


一、需要认真上课的

1.应用数理统计(开卷考试)

2.最优化方法(开卷考试)

3.跨文化交际(主题演讲20+课堂讨论20+我的东大视频配音10+课下论文20+知识问卷10)

4.高级计算机系统结构(开卷考试+课上写回答)

二、上课不用听的

1.自然语言处理()

代码如下(示例):

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
import  ssl
ssl._create_default_https_context = ssl._create_unverified_context

2.新中特()

代码如下(示例):

data = pd.read_csv('https://labfile.oss.aliyuncs.com/courses/1283/adult.data.csv')
print(data.head())

该处使用的url网络请求的数据。

3.信息检索()


总结

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/54635.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[系统设计总结] - Proximity Service算法介绍

问题描述 Proximity Service广泛应用于各种地图相关的服务中比如外卖,大众点评,Uber打车,Google地图中,其中比较关键的是我们根据用户的位置来快速找到附近的餐厅,司机,外卖员也就是就近查询算法。 主流的…

小程序面板开发教程|开发照明 Matter 面板步骤(一)

一. 前置知识 前言 出于对 Matter 标准协议及第三方设备接入的可拓展性等方面考虑,照明 Matter 模型面板的功能点定义会与照明的 DP 模型有所不同,因此本文会着重介绍照明 Matter 面板的功能点定义及与 DP 模型的区别,以方便面板小程序开发…

Qt-QLabel 添加图片并设置 GIF 图动态效果

Qt-QLabel 添加图片并设置 GIF 图动态效果 一、添加图片资源并设置图片 选择标签,拖拉到界面上,然后选择器属性 picmap   选择设置,在这里添加图片资源   点击左边的加号符号按钮添加前缀,并设置前缀名,如果已经…

uniapp+renderJS+google map开发安卓版APP非小程序

背景需求 需要在uniapp中接入google地图,研究了一番,都没有找到合适的,现在说一下教程。 效果图 前期工作 这两点缺一不可,否则你啥也看不到。 1、电脑安装L-O-U梯 用于访问G-OO-G-LE的API或者创建google map key。 2、手机安装L-O-U梯 用于显示google地图。我就是手…

数据篇| 关于Selenium反爬杂谈

友情提示:本章节只做相关技术讨论, 爬虫触犯法律责任与作者无关。 LLM虽然如火如荼进行着, 但是没有数据支撑, 都是纸上谈兵, 人工智能的三辆马车:算法-数据-算力,缺一不可。之前写过关于LLM微调文章《微调入门篇:大模型微调的理论学习》、《微调实操一: 增量预训练(Pretrai…

USB 电缆中的信号线 DP、DM 的缩写由来

经常在一些芯片的规格书中看到 USB 的信号对是以 DP 和 DM 命名: 我在想,这些规格书是不是写错了,把 N 写成 M 了?DM 中的 M 到底是什么的缩写? 于是我找了一些资料,终于在《Universal Serial Bus Cables …

xilinx hbm ip运用

AXI-HBM是一个集成的IP核,该核提供高达16个AXI3从PORT的HBM接口,每个使用他自己的独立的时钟。HBM2 GEN存储器也支持,HBM相对传统DDR的方案,带宽得到极大的提高 特征 AXI3从端口存储器接口 -16个独立的256bit存储器接口 -可选的…

Why Is Prompt Tuning for Vision-Language Models Robust to Noisy Labels?

文章汇总 本文的作者针对了提示学习的结构设计进行了分析,发现了一些规律: 1)固定的类名令牌为模型的优化提供了强正则化,减少了由噪声样本引起的梯度。 2)从多样化和通用的web数据中学习到的强大的预训练图像文本嵌入为图像分类提供了强大…

FreeRTOS学习——接口宏portmacro.h

FreeRTOS学习——接口宏portmacro.h,仅用于记录自己阅读与学习源码 FreeRTOS Kernel V10.5.1 portmacro版本:GCC/ARM_CM7 portmacro.h是什么 portmacro.h头文件,用于定义与特定硬件平台相关的数据类型和常量。 在移植过程中,…

stm32 keil有一些别人的工程在你这打开为什么会乱码?如何解决的

因为别人编辑代码使用的编辑器和你的不一样,要更正可以调一下自己的翻译器编码格式 也可以直接换掉文件的格式, 用记事本打开文件,然后点会另存为,下面有个编码格式选择,换成你自己的就行

结构设计模式 -装饰器设计模式 - JAVA

装饰器设计模式 一. 介绍二. 代码示例2.1 抽象构件(Component)角色2.2 具体构件(Concrete Component)角色2.3 装饰(Decorator)角色2.4 具体装饰(Concrete Decorator)角色2.5 测试 结…

【鸿蒙HarmonyOS NEXT】用户首选项Preference存储数据

【鸿蒙HarmonyOS NEXT】数据存储之用户首选项Preference 一、环境说明二、Preference运作机制三、示例代码加以说明四、小结 一、环境说明 DevEco Studio 版本: API版本:以12为主 二、Preference运作机制 应用场景: 用户首选项为应用提…

模型Alignment之RLHF与DPO

1. RLHF (Reinforcement Learning from Human Feedback) RLHF 是一种通过人类反馈来强化学习的训练方法,它能够让语言模型更好地理解和执行人类指令。 RLHF 的三个阶段 RLHF 的训练过程一般分为三个阶段: 监督微调(Supervised Fine-Tuning,…

TensorRT-LLM——优化大型语言模型推理以实现最大性能的综合指南

引言 随着对大型语言模型 (LLM) 的需求不断增长,确保快速、高效和可扩展的推理变得比以往任何时候都更加重要。NVIDIA 的 TensorRT-LLM 通过提供一套专为 LLM 推理设计的强大工具和优化,TensorRT-LLM 可以应对这一挑战。TensorRT-LLM 提供了一系列令人印…

.net core8 使用JWT鉴权(附当前源码)

说明 该文章是属于OverallAuth2.0系列文章,每周更新一篇该系列文章(从0到1完成系统开发)。 该系统文章,我会尽量说的非常详细,做到不管新手、老手都能看懂。 说明:OverallAuth2.0 是一个简单、易懂、功能强…

YOLOv8——测量高速公路上汽车的速度

引言 在人工神经网络和计算机视觉领域,目标识别和跟踪是非常重要的技术,它们可以应用于无数的项目中,其中许多可能不是很明显,比如使用这些算法来测量距离或对象的速度。 测量汽车速度基本步骤如下: 视频采集&#x…

游戏如何应对云手机刷量问题

云手机的实现原理是依托公有云和 ARM 虚拟化技术,为用户在云端提供一个安卓实例,用户可以将手机上的应用上传至云端,再通过视频流的方式,远程实时控制云手机。 市面上常见的几款云手机 原本需要手机提供的计算、存储等能力都改由…

python文件读写知识简记

简单记录一下python文件读写相关知识 一、打开文件 python使用open函数打开文件,函数原型如下 open(file, moder, buffering-1, encodingNone, errorsNone, newline None, closefdTrue, openerNone) file 文件地址 mode 文件打开模式,可设定为如下的…

深度学习实战:UNet模型的训练与测试详解

🍑个人主页:Jupiter. 🚀 所属专栏:Linux从入门到进阶 欢迎大家点赞收藏评论😊 目录 1、云实例:配置选型与启动1.1 登录注册1.2 配置 SSH 密钥对1.3 创建实例1.4 登录云实例 2、云存储:数据集上传…

【鸿蒙】HarmonyOS NEXT开发快速入门教程之ArkTS语法装饰器(上)

系列文章目录 【鸿蒙】HarmonyOS NEXT开发快速入门教程之ArkTS语法装饰器(上) 【鸿蒙】HarmonyOS NEXT开发快速入门教程之ArkTS语法装饰器(下) 文章目录 系列文章目录前言一、ArkTS基本介绍1、 ArkTS组成2、组件参数和属性2.1、区…