【Django5】django的helloworld

安装django

pip install django

在这里插入图片描述
Django官方中文文档

https://docs.djangoproject.com/zh-hans/5.1/

Github链接

https://github.com/django/django

创建Django项目
cd到想要创建项目的文件夹下,输入以下命令创建项目
这行代码将会在当前目录下创建一个 mysite 目录

django-admin startproject mysite

会生成以下目录结构的项目
在这里插入图片描述
这些目录和文件的用处是:

  • 最外层的 mysite/ 根目录只是你项目的容器, 根目录名称对 Django 没有影响,你可以将它重命名为任何你喜欢的名称。
  • manage.py: 一个让你用各种方式管理 Django 项目的命令行工具。
  • 里面一层的 mysite/ 目录包含你的项目,它是一个纯 Python 包。
  • mysite/init.py:一个空文件,告诉 Python 这个目录应该被认为是一个 Python 包。
  • mysite/settings.py:Django 项目的配置文件。如果你想知道这个文件是如何工作的,
  • mysite/urls.py:Django 项目的 URL 声明,就像你网站的“目录”。
  • mysite/asgi.py:作为你的项目的运行在 ASGI 兼容的 Web 服务器上的入口。
  • mysite/wsgi.py:作为你的项目的运行在 WSGI 兼容的Web服务器上的入口。

运行项目,启动服务器

python manage.py runserver

服务器现在正在运行,通过浏览器访问 http://127.0.0.1:8000/ 。你将看到一个“祝贺”页面,有一只火箭正在发射。你成功了!
在这里插入图片描述
现在是个提醒你的好时机:千万不要 将这个服务器用于和生产环境相关的任何地方。这个服务器只是为了开发而设计的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/54211.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法.图论-并查集上

文章目录 1. 并查集介绍2. 并查集的实现2.1 实现逻辑2.2 isSameSet方法2.3 union方法(小挂大优化)2.4 find方法(路径压缩优化) 3. 并查集模板 1. 并查集介绍 定义: 并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题(即所…

JavaDS —— 图

图的概念 图是由顶点集合以及顶点之间的关系组成的一种数据结构:G (V,E) 其中 V 表示的是顶点集合 : V { x | x 属于某个数据对象集} 是有穷非空集合 E 叫做边的集合 : E {(x, y) | x, y 属于 V} 或者 …

Qt 模型视图(二):模型类QAbstractItemModel

文章目录 Qt 模型视图(二):模型类QAbstractItemModel1.基本概念1.1.模型的基本结构1.2.模型索引1.3.行号和列号1.4.父项1.5.项的角色1.6.总结 Qt 模型视图(二):模型类QAbstractItemModel ​ 模型/视图结构是一种将数据存储和界面展示分离的编程方法。模…

Kotlin cancel CoroutineScope.launch的任务后仍运行

Kotlin cancel CoroutineScope.launch的任务后仍运行 import kotlinx.coroutines.*fun main() {runBlocking {val coroutineScope CoroutineScope(Dispatchers.IO)val job coroutineScope.launch {var i 0while (i < Int.MAX_VALUE) {iprintln(i)}}// 2ms 取消协程delay(…

搜索小车运动最短路径python代码实现

一、实验任务 场地中正方格代表障碍物&#xff0c;选取小车运动起点和终点。编程探究小车从起点运动到终点&#xff0c;总共有几种可行的路径&#xff08;路径不含重叠部分&#xff09;&#xff0c;同时找出最短路径并可视化。 二、实验思路 把场地抽象化为69的平面矩阵&…

Deep Learning-Based Object Pose Estimation:A Comprehensive Survey

论文&#xff1a;https://arxiv.org/pdf/2405.07801v3 项目&#xff1a;https://github.com/CNJianLiu/Awesome-Object-Pose-Estimation 年份&#xff1a;2024 方向&#xff1a;姿态估计 1. 目标姿态估计定义 估计图像中目标相对于相机的姿态&#xff0c; 目标姿态估计是增…

YoloV8 trick讲解

1.将 YOLOv5 的 C3结构换成了梯度流更丰富的 C2f结构: C3 C3 模块的设计灵感来自 CSPNet&#xff0c;其核心思想是将特征图的部分通道进行分割和并行处理&#xff0c;目的是减少冗余梯度信息&#xff0c;同时保持较高的网络表达能力。C3 结构与传统的残差结构类似&#xff0c;但…

yolov5/8/9/10模型在VOC数据集上的应用【代码+数据集+python环境+GUI系统】

yolov5/8/9/10模型在VOC数据集上的应用【代码数据集python环境GUI系统】 1.背景意义 VOC数据集被广泛应用于计算机视觉领域的研究和实验中&#xff0c;特别是目标检测和图像识别任务。许多知名的目标检测算法都使用VOC数据集进行训练和测试。VOC挑战赛&#xff08;VOC Challeng…

neo4j安装启动教程+对应的jdk配置

参考这位博主的视频教程&#xff1a;neo4j社区windows版下载 一、官网下载neo4j的安装包 &#xff08;1&#xff09;官网下载页面 &#xff08;2&#xff09;上一步 【download】之后&#xff0c;会自动下载&#xff0c;如果没有&#xff0c;点击【here】 这里可以看到一行字…

深度学习——基础知识

深度学习的重点在于优化&#xff0c;其中很重要的步骤在于如何调参&#xff0c;会涉及到一些微积分等数学知识。不同于以往接触到的数值运算&#xff0c;深度&#xff08;机器&#xff09;学习都是关于张量Tensor&#xff08;向量&#xff09;的计算&#xff0c;Python中最常用…

【探索数据结构与算法】插入排序:原理、实现与分析(图文详解)

目录 一、插入排序 算法思想 二、插入排序 算法步骤 四、复杂度分析 时间复杂度&#xff1a;O(n^2) 空间复杂度&#xff1a;O(1) 稳定性&#xff1a;稳定算法 五、应用场景 &#x1f493; 博客主页&#xff1a;C-SDN花园GGbond ⏩ 文章专栏&#xff1a;探索数据结构…

【JAVA开源】基于Vue和SpringBoot的购物商城网站

本文项目编号 T 032 &#xff0c;文末自助获取源码 \color{red}{T032&#xff0c;文末自助获取源码} T032&#xff0c;文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析 六、核心代码6.1 查…

【Java面试】第九天

&#x1f31f;个人主页&#xff1a;时间会证明一切. 目录 Spring中如何开启事务&#xff1f;编程式事务声明式事务声明式事务的优点声明式事务的粒度问题声明式事务用不对容易失效 Spring的事务传播机制有哪些&#xff1f;Spring事务失效可能是哪些原因&#xff1f;代理失效的情…

红黑树的插入(NGINX源码)

下载并查看NGINX源码 访问NGINX下载页面&#xff0c;找到所需版本 https://nginx.org/en/download.html 使用wget下载源码包&#xff0c;替换版本号为所需版本 wget http://nginx.org/download/nginx-1.24.0.tar.gz解压源码包 tar -xzvf nginx-1.24.0.tar.gz进入解压后的目…

用nginx-rtmp-win32-master及ffmpeg模拟rtmp视频流

效果 使用nginx-rtmp-win32-master搭建RTMP服务 双击exe就可以了。切记整个目录不能有中文 README.md ,启用后本地的RTM路径: rtmp://192.168.1.186/live/xxx ffmpeg将地本地视频推RMTP F:\rtsp\ffmpeg-7.0.2-essentials_build\bin>ffmpeg -re -i F:\rtsp\123.mp4 -c c…

苹果为什么不做折叠屏手机?

苹果为什么不做折叠屏手机&#xff1f;折叠屏手机在最近这些年里边&#xff0c;可以说是市场的一个主要在手机上的增长点。你像华W最近推出这个三折叠手机&#xff0c;引起了整个市场的轰动。 可是&#xff0c;为什么苹果到今天为止不为所动&#xff0c;还在那不停地在现在的这…

Leetcode Hot 100刷题记录 -Day14(矩阵置0)

矩阵置0 问题描述&#xff1a; 给定一个 m x n 的矩阵&#xff0c;如果一个元素为 0 &#xff0c;则将其所在行和列的所有元素都设为 0。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,1,1],[1,0,1],[1,1,1]] 输出&#xff1a;[[1,0,1],[0,0,0],[1,0,1]]示例 2&#xff1a;…

华为OD机试 - 端口合并(Python/JS/C/C++ 2024 E卷 100分)

华为OD机试 2024E卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试真题&#xff08;Python/JS/C/C&#xff09;》。 刷的越多&#xff0c;抽中的概率越大&#xff0c;私信哪吒&#xff0c;备注华为OD&#xff0c;加入华为OD刷题交流群&#xff0c;…

Web后端服务平台解析漏洞与修复、文件包含漏洞详解

免责申明 本文仅是用于学习检测自己搭建的Web后端服务平台解析漏洞、文件包含漏洞的相关原理,请勿用在非法途径上,若将其用于非法目的,所造成的一切后果由您自行承担,产生的一切风险和后果与笔者无关;本文开始前请认真详细学习《‌中华人民共和国网络安全法》‌及其所在国…

mysql怎样优化count(*) from 表名 where …… or ……这种慢sql

一 问题描述 线上发现一条类似这样的慢sql&#xff08;查询时长8s&#xff09;&#xff1a; select id,name,(select count(*) from t14 where t14.idt15.id or t14.id2t15.id) as cnt from t15 ; t14的id和id2字段上都有索引&#xff0c;但是因为条件里有or&#xff0c;导致…