算法.图论-并查集上

文章目录

    • 1. 并查集介绍
    • 2. 并查集的实现
      • 2.1 实现逻辑
      • 2.2 isSameSet方法
      • 2.3 union方法(小挂大优化)
      • 2.4 find方法(路径压缩优化)
    • 3. 并查集模板

1. 并查集介绍

定义:
并查集是一种树型的数据结构,用于处理一些不相交集合的合并及查询问题(即所谓的并、查)。比如说,我们可以用并查集来判断一个森林中有几棵树、某个节点是否属于某棵树等
并查集的常见的方法:

方法作用
int find (int)作用就是查找一个元素所在大集合的代表元素, 返回这个元素
boolean isSameSet (int, int)判断传入的两个元素是不是同属一个大集合, 返回T/F
void union (int, int)合并传入的两个元素所代表的大集团(注意不仅仅是这两个元素)

并查集的时间复杂的要求就是实现上述的操作的时间复杂度都是O(1)
下面是关于并查集的一些常见的操作的图示
在这里插入图片描述

2. 并查集的实现

2.1 实现逻辑

不论是哈希表的机构还是list的顺序结构或者是其他的常见的数据结构, 都不可以做到时间复杂度是O(1)的这个指标, 我们直接介绍实现的方式 --> 通过一个father数组以及size数组
关于这两个数组的含义:

数组含义
father下标i代表的是元素的编号, father[i]代表的是他的父亲节点
size下标i代表的是元素的编号, size[i]代表的是这个节点的孩子节点的个数(包括本身)

在这里插入图片描述
初态就是这个样子, 每一个元素的父亲节点都是其本身, 也就是说每一个节点本身就是其所在集合的代表节点, 然后这个集合的大小就是1
下面我们执行操作
step1 : union(a, b)
step2 : union(c, a)
下面是图示(图解一下操作1, 操作2其实是同理的)
在这里插入图片描述
上面的图解也说明了很多问题, 我们的树形结构的挂载的方式是, 小挂大(小的树挂到大树上)
此时进行了union操作之后的逻辑结构就是左下角所示, 此时我们 {a,b} 共属于一个集合, 进行find操作的时候, find(a) 的结果是 b, find(b) 的结果也是 b, 此时size数组中a的值不会再使用了, 因为这时a不可能是领袖节点了, 也就是说这个数据是脏数据…

2.2 isSameSet方法

其实正常来说我们的isSameSet方法和union方法都需要调用find方法, 但是find方法中的路径压缩的技巧是比较重要的, 所以我们单独拎出来放后面说(这里假设已经实现好了), 实现也是比较简单的, 只需要找到这两个元素的代表领袖节点看是不是一个就可以了

	//isSameSet方法private static boolean isSameSet(int a, int b){return find(a) == find(b);}

2.3 union方法(小挂大优化)

解释一下小挂大概念, 在算法导论这本书中说到的是一种秩的概念, 本质上也是为了降低树(集团)的高度所做出的努力, 但这个不是特别必要的…, 也就是在两大集团合并的时候, 小集团(小数目的节点)要依附大集团而存在, 也就是合并的时候, 小集团要挂在大集团上面, 这样可以从一定程度上降低树的高度
代码实现如下

	//union方法private static void union(int a, int b){int fa = find(a);int fb = find(b);if(fa != fb){sets--;if(size[fa] >= size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}

2.4 find方法(路径压缩优化)

上面的union的小挂大优化, 其实不是特别必要的, 但是我们find方法中的路径压缩是一定要完成的, 如果没有路径压缩的话, 我们的时间复杂度的指标就不会是O(1)
路径压缩指的就是, 在find方法找到父亲节点的时候, 同时把我们的沿途所有节点的父亲节点都改为找到的父亲节点, 以便于操作的时候不用遍历一个长链去寻找父亲节点, 图解如下
在这里插入图片描述
假设我们执行find(a)操作, 就会如图所示把我们的沿途的所有节点的父亲节点都改为领袖节点e
我们借助的是stack栈结构, 或者是递归(其实就是系统栈)实现的

private static final int MAX_CP = 31;private static final int[] father = new int[MAX_CP];private static final int[] size = new int[MAX_CP];private static final int[] stack = new int[MAX_CP];//find方法(路径压缩的迭代实现)private static int find1(int a){int sz = 0;while(father[a] != a){stack[sz++] = a;a = father[a];}while(sz > 0){father[stack[--sz]] = a;}return father[a];}//find方法(路径压缩的递归实现)private static int find(int a){if(father[a] != a){father[a] = find(father[a]);}return father[a];}

3. 并查集模板

上面就是我们关于并查集最基本的分析, 我们提供几个测试链接测试一下

牛客并查集模板

//并查集的基本实现方式
import java.util.*;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.io.OutputStreamWriter;
import java.io.IOException;public class Main {private static final int MAXN = 1000001;private static final int[] father = new int[MAXN];private static final int[] size = new int[MAXN];private static final int[] stack = new int[MAXN];private static int cnt = 0;private static void build(int sz) {cnt = sz;for (int i = 0; i <= cnt; i++) {father[i] = i;size[i] = 1;}}private static int find(int n) {//下面就是扁平化(路径压缩的处理技巧)int capacity = 0;while (father[n] != n) {stack[capacity++] = n;n = father[n];}//开始改变沿途节点的指向while (capacity > 0) {father[stack[--capacity]] = n;}return father[n];}private static boolean isSameSet(int a, int b) {return find(a) == find(b);}private static void union(int a, int b) {//下面的设计就是小挂大的思想int fa = find(a);int fb = find(b);if (fa != fb) {if (size[fa] >= size[fb]) {father[fb] = fa;size[fa] += size[fb];} else {father[fa] = fb;size[fb] += size[fa];}}}//我们使用的是高效率的io工具(使用的其实就是一种缓存的技术)public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while (in.nextToken() != StreamTokenizer.TT_EOF) {int n = (int)in.nval;build(n);in.nextToken();int m = (int)in.nval;for (int i = 0; i < m; i++) {in.nextToken();int op = (int)in.nval;in.nextToken();int n1 = (int)in.nval;in.nextToken();int n2 = (int)in.nval;if (op == 1) {out.println(isSameSet(n1, n2) ? "Yes" : "No");} else {union(n1, n2);}}}out.flush();out.close();br.close();}
}

洛谷并查集模板

//并查集的基本实现方式
import java.util.*;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.io.OutputStreamWriter;
import java.io.IOException;public class Main {private static final int MAXN = 100001;private static final int[] father = new int[MAXN];private static final int[] size = new int[MAXN];private static final int[] stack = new int[MAXN];private static int cnt = 0;private static void build(int sz){cnt = sz;for(int i = 0; i <= cnt; i++){father[i] = i;size[i] = 1;}}private static int find(int n){//下面就是扁平化(路径压缩的处理技巧)int capacity = 0;while(father[n] != n){stack[capacity++] = n;n = father[n];}//开始改变沿途节点的指向while(capacity > 0){father[stack[--capacity]] = n;}return father[n];}private static boolean isSameSet(int a, int b){return find(a) == find(b);}private static void union(int a, int b){//下面的设计就是小挂大的思想int fa = find(a);int fb = find(b);if(fa != fb){if(size[fa] >= size[fb]){father[fb] = fa;size[fa] += size[fb];}else{father[fa] = fb;size[fb] += size[fa];}}}//我们使用的是高效率的io工具(使用的其实就是一种缓存的技术)public static void main(String[] args) throws IOException{BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while(in.nextToken() != StreamTokenizer.TT_EOF){int n = (int)in.nval;build(n);in.nextToken();int m = (int)in.nval;for(int i = 0; i < m; i++){in.nextToken();int op = (int)in.nval;in.nextToken();int n1 = (int)in.nval;in.nextToken();int n2 = (int)in.nval;if(op == 2){out.println(isSameSet(n1, n2) ? "Y" : "N");}else{union(n1, n2);}}}out.flush();out.close();br.close();}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/54210.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaDS —— 图

图的概念 图是由顶点集合以及顶点之间的关系组成的一种数据结构&#xff1a;G &#xff08;V&#xff0c;E&#xff09; 其中 V 表示的是顶点集合 &#xff1a; V { x | x 属于某个数据对象集} 是有穷非空集合 E 叫做边的集合 &#xff1a; E {(x, y) | x, y 属于 V} 或者 …

Qt 模型视图(二):模型类QAbstractItemModel

文章目录 Qt 模型视图(二)&#xff1a;模型类QAbstractItemModel1.基本概念1.1.模型的基本结构1.2.模型索引1.3.行号和列号1.4.父项1.5.项的角色1.6.总结 Qt 模型视图(二)&#xff1a;模型类QAbstractItemModel ​ 模型/视图结构是一种将数据存储和界面展示分离的编程方法。模…

Kotlin cancel CoroutineScope.launch的任务后仍运行

Kotlin cancel CoroutineScope.launch的任务后仍运行 import kotlinx.coroutines.*fun main() {runBlocking {val coroutineScope CoroutineScope(Dispatchers.IO)val job coroutineScope.launch {var i 0while (i < Int.MAX_VALUE) {iprintln(i)}}// 2ms 取消协程delay(…

搜索小车运动最短路径python代码实现

一、实验任务 场地中正方格代表障碍物&#xff0c;选取小车运动起点和终点。编程探究小车从起点运动到终点&#xff0c;总共有几种可行的路径&#xff08;路径不含重叠部分&#xff09;&#xff0c;同时找出最短路径并可视化。 二、实验思路 把场地抽象化为69的平面矩阵&…

Deep Learning-Based Object Pose Estimation:A Comprehensive Survey

论文&#xff1a;https://arxiv.org/pdf/2405.07801v3 项目&#xff1a;https://github.com/CNJianLiu/Awesome-Object-Pose-Estimation 年份&#xff1a;2024 方向&#xff1a;姿态估计 1. 目标姿态估计定义 估计图像中目标相对于相机的姿态&#xff0c; 目标姿态估计是增…

YoloV8 trick讲解

1.将 YOLOv5 的 C3结构换成了梯度流更丰富的 C2f结构: C3 C3 模块的设计灵感来自 CSPNet&#xff0c;其核心思想是将特征图的部分通道进行分割和并行处理&#xff0c;目的是减少冗余梯度信息&#xff0c;同时保持较高的网络表达能力。C3 结构与传统的残差结构类似&#xff0c;但…

yolov5/8/9/10模型在VOC数据集上的应用【代码+数据集+python环境+GUI系统】

yolov5/8/9/10模型在VOC数据集上的应用【代码数据集python环境GUI系统】 1.背景意义 VOC数据集被广泛应用于计算机视觉领域的研究和实验中&#xff0c;特别是目标检测和图像识别任务。许多知名的目标检测算法都使用VOC数据集进行训练和测试。VOC挑战赛&#xff08;VOC Challeng…

neo4j安装启动教程+对应的jdk配置

参考这位博主的视频教程&#xff1a;neo4j社区windows版下载 一、官网下载neo4j的安装包 &#xff08;1&#xff09;官网下载页面 &#xff08;2&#xff09;上一步 【download】之后&#xff0c;会自动下载&#xff0c;如果没有&#xff0c;点击【here】 这里可以看到一行字…

深度学习——基础知识

深度学习的重点在于优化&#xff0c;其中很重要的步骤在于如何调参&#xff0c;会涉及到一些微积分等数学知识。不同于以往接触到的数值运算&#xff0c;深度&#xff08;机器&#xff09;学习都是关于张量Tensor&#xff08;向量&#xff09;的计算&#xff0c;Python中最常用…

【探索数据结构与算法】插入排序:原理、实现与分析(图文详解)

目录 一、插入排序 算法思想 二、插入排序 算法步骤 四、复杂度分析 时间复杂度&#xff1a;O(n^2) 空间复杂度&#xff1a;O(1) 稳定性&#xff1a;稳定算法 五、应用场景 &#x1f493; 博客主页&#xff1a;C-SDN花园GGbond ⏩ 文章专栏&#xff1a;探索数据结构…

【JAVA开源】基于Vue和SpringBoot的购物商城网站

本文项目编号 T 032 &#xff0c;文末自助获取源码 \color{red}{T032&#xff0c;文末自助获取源码} T032&#xff0c;文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析 六、核心代码6.1 查…

【Java面试】第九天

&#x1f31f;个人主页&#xff1a;时间会证明一切. 目录 Spring中如何开启事务&#xff1f;编程式事务声明式事务声明式事务的优点声明式事务的粒度问题声明式事务用不对容易失效 Spring的事务传播机制有哪些&#xff1f;Spring事务失效可能是哪些原因&#xff1f;代理失效的情…

红黑树的插入(NGINX源码)

下载并查看NGINX源码 访问NGINX下载页面&#xff0c;找到所需版本 https://nginx.org/en/download.html 使用wget下载源码包&#xff0c;替换版本号为所需版本 wget http://nginx.org/download/nginx-1.24.0.tar.gz解压源码包 tar -xzvf nginx-1.24.0.tar.gz进入解压后的目…

用nginx-rtmp-win32-master及ffmpeg模拟rtmp视频流

效果 使用nginx-rtmp-win32-master搭建RTMP服务 双击exe就可以了。切记整个目录不能有中文 README.md ,启用后本地的RTM路径: rtmp://192.168.1.186/live/xxx ffmpeg将地本地视频推RMTP F:\rtsp\ffmpeg-7.0.2-essentials_build\bin>ffmpeg -re -i F:\rtsp\123.mp4 -c c…

苹果为什么不做折叠屏手机?

苹果为什么不做折叠屏手机&#xff1f;折叠屏手机在最近这些年里边&#xff0c;可以说是市场的一个主要在手机上的增长点。你像华W最近推出这个三折叠手机&#xff0c;引起了整个市场的轰动。 可是&#xff0c;为什么苹果到今天为止不为所动&#xff0c;还在那不停地在现在的这…

Leetcode Hot 100刷题记录 -Day14(矩阵置0)

矩阵置0 问题描述&#xff1a; 给定一个 m x n 的矩阵&#xff0c;如果一个元素为 0 &#xff0c;则将其所在行和列的所有元素都设为 0。 示例 1&#xff1a; 输入&#xff1a;matrix [[1,1,1],[1,0,1],[1,1,1]] 输出&#xff1a;[[1,0,1],[0,0,0],[1,0,1]]示例 2&#xff1a;…

华为OD机试 - 端口合并(Python/JS/C/C++ 2024 E卷 100分)

华为OD机试 2024E卷题库疯狂收录中&#xff0c;刷题点这里 专栏导读 本专栏收录于《华为OD机试真题&#xff08;Python/JS/C/C&#xff09;》。 刷的越多&#xff0c;抽中的概率越大&#xff0c;私信哪吒&#xff0c;备注华为OD&#xff0c;加入华为OD刷题交流群&#xff0c;…

Web后端服务平台解析漏洞与修复、文件包含漏洞详解

免责申明 本文仅是用于学习检测自己搭建的Web后端服务平台解析漏洞、文件包含漏洞的相关原理,请勿用在非法途径上,若将其用于非法目的,所造成的一切后果由您自行承担,产生的一切风险和后果与笔者无关;本文开始前请认真详细学习《‌中华人民共和国网络安全法》‌及其所在国…

mysql怎样优化count(*) from 表名 where …… or ……这种慢sql

一 问题描述 线上发现一条类似这样的慢sql&#xff08;查询时长8s&#xff09;&#xff1a; select id,name,(select count(*) from t14 where t14.idt15.id or t14.id2t15.id) as cnt from t15 ; t14的id和id2字段上都有索引&#xff0c;但是因为条件里有or&#xff0c;导致…

电路设计学习(一)

FUSB302BUCX 可编程 USB Type-C 控制器&#xff0c;带 PD&#xff08;默认 SNK&#xff09; FUSB302BUCX 是一款由 ON Semiconductor 生产的 USB Type-C 控制器&#xff0c;用于实现 USB Type-C 和 USB Power Delivery (PD) 协议。它主要负责 USB Type-C 端口的检测、CC 引脚…