利用Python进行大规模数据处理【第173篇—数据处理】

👽发现宝藏

前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。【点击进入巨牛的人工智能学习网站】。

利用Python进行大规模数据处理:Hadoop与Spark的对比

随着数据量的不断增长,大规模数据处理变得越来越重要。在这个领域,Hadoop和Spark是两个备受关注的技术。本文将介绍如何利用Python编程语言结合Hadoop和Spark来进行大规模数据处理,并比较它们在不同方面的优劣。

简介

Hadoop

Hadoop是一个开源的分布式数据处理框架,它基于MapReduce编程模型,可以处理大规模数据集。Hadoop包括HDFS(分布式文件系统)和MapReduce(分布式计算框架)两个核心组件。

Spark

Spark是另一个开源的大数据处理框架,它提供了比Hadoop更快速和更强大的数据处理能力。Spark的核心是RDD(弹性分布式数据集)和Spark Core,它支持多种编程语言,包括Python。

Hadoop与Spark的对比

image-20240331015953344

性能

Hadoop

Hadoop的性能受限于MapReduce的磁盘IO操作,因此在处理大规模数据时,性能可能会受到影响。

Spark

Spark使用内存计算,可以将数据存储在内存中,因此具有更快的处理速度和更高的性能。

编程模型

Hadoop

Hadoop的编程模型相对较为复杂,需要编写Map和Reduce函数,并手动管理中间数据的传输。

Spark

Spark提供了更简洁的编程模型,支持丰富的API,包括RDD、DataFrame和SQL等,使得开发人员可以更轻松地进行数据处理和分析。

生态系统

Hadoop

Hadoop生态系统庞大,包括Hive、HBase、Pig等多个项目,可以满足各种不同的数据处理需求。

Spark

Spark的生态系统也在不断壮大,支持与Hadoop生态系统的集成,并且提供了许多扩展库和工具,如Spark Streaming、Spark MLlib等。

案例代码

Hadoop案例

# 使用Python编写Hadoop的MapReduce程序
from mrjob.job import MRJobclass WordCount(MRJob):def mapper(self, _, line):for word in line.split():yield word, 1def reducer(self, word, counts):yield word, sum(counts)if __name__ == '__main__':WordCount.run()

Spark案例

# 使用Python编写Spark程序
from pyspark import SparkContextsc = SparkContext("local", "WordCount")# 读取文本文件
lines = sc.textFile("input.txt")# 分割单词并计数
word_counts = lines.flatMap(lambda line: line.split()) \.map(lambda word: (word, 1)) \.reduceByKey(lambda a, b: a + b)# 输出结果
word_counts.saveAsTextFile("output")

部署与管理

image-20240331020005507

Hadoop

Hadoop的部署相对复杂,需要手动配置和管理HDFS、YARN等组件,并进行集群的调优和监控。通常需要专业的运维团队来负责维护和管理。

Spark

Spark的部署相对简单,可以通过Spark Standalone模式或者与其他集群管理工具如Apache Mesos、Kubernetes等集成来进行部署。Spark提供了丰富的监控工具和Web界面,方便用户进行集群的管理和监控。

进阶案例代码

使用Spark进行机器学习

# 导入必要的库
from pyspark.sql import SparkSession
from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression
from pyspark.ml.evaluation import RegressionEvaluator# 创建SparkSession
spark = SparkSession.builder \.appName("LinearRegressionExample") \.getOrCreate()# 读取数据集
data = spark.read.csv("data.csv", header=True, inferSchema=True)# 数据预处理
assembler = VectorAssembler(inputCols=["feature1", "feature2", "feature3"], outputCol="features")
data_preprocessed = assembler.transform(data).select("features", "label")# 划分训练集和测试集
train_data, test_data = data_preprocessed.randomSplit([0.8, 0.2], seed=123)# 构建线性回归模型
lr = LinearRegression(featuresCol="features", labelCol="label")# 训练模型
lr_model = lr.fit(train_data)# 在测试集上进行预测
predictions = lr_model.transform(test_data)# 评估模型性能
evaluator = RegressionEvaluator(labelCol="label", predictionCol="prediction", metricName="rmse")
rmse = evaluator.evaluate(predictions)
print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)# 关闭SparkSession
spark.stop()

使用Hadoop进行日志分析

# 导入必要的库
from mrjob.job import MRJobclass LogAnalysis(MRJob):def mapper(self, _, line):# 提取关键信息ip, date, time, request, status, _ = line.split()yield ip, (date, time, request, status)def reducer(self, ip, records):# 统计每个IP地址的请求次数count = 0for record in records:count += 1yield ip, countif __name__ == '__main__':LogAnalysis.run()

通过以上案例代码,我们可以看到如何利用Spark进行机器学习任务,以及如何利用Hadoop进行日志分析。这些示例展示了Python与大数据处理框架的结合,使得开发人员能够更轻松地处理大规模数据,并从中获取有价值的信息。

image-20240331020052991

Hadoop

日志分析

在互联网和电子商务领域,大量的日志数据需要进行实时分析,以了解用户行为和产品趋势。Hadoop可以通过MapReduce模型对这些日志数据进行处理和分析,从而为企业提供更多有价值的信息。

数据仓库

许多企业使用Hadoop作为数据仓库,用于存储和管理海量的结构化和非结构化数据。Hadoop的分布式存储和计算能力使得企业可以轻松扩展存储空间,并实现快速的数据分析和查询。

Spark

实时数据处理

在金融、电信和物联网等领域,需要对实时生成的数据进行快速处理和分析,以及时发现异常情况和提供个性化服务。Spark的流式处理模块可以满足这些需求,实现实时数据处理和分析。

机器学习

随着人工智能和机器学习技术的发展,越来越多的企业开始利用大数据来构建和训练机器学习模型。Spark提供了强大的机器学习库(如MLlib),可以在分布式环境下进行大规模数据的机器学习和深度学习。

未来展望

随着数据量的不断增长和技术的不断发展,大数据处理技术将会进一步演进和完善。未来,我们可以期待更加高效和智能的大数据处理工具和平台的出现,从而为企业提供更多更好的数据处理和分析解决方案。同时,Python作为一种简洁而强大的编程语言,将继续在大数据领域发挥重要作用,为开发人员提供更多的创新和可能性。

总结

本文探讨了利用Python进行大规模数据处理时,Hadoop与Spark的对比及其在不同方面的优劣,并提供了相关案例代码。从性能、编程模型、生态系统、部署与管理等角度来看,Spark在许多方面都表现出了更优异的特性,尤其是在处理大规模数据时具有更快的速度和更高的性能。此外,Spark提供了更简洁和强大的编程模型,使得开发人员能够更轻松地进行数据处理和分析。

然而,Hadoop作为大数据领域的先驱,其生态系统庞大且成熟,为企业提供了多种多样的数据处理工具和解决方案。在实际应用中,需要根据具体需求和场景来选择合适的技术栈。无论选择Hadoop还是Spark,Python作为一种简洁而强大的编程语言,都可以与它们结合使用,为企业的数据处理和分析提供更多可能性和机遇。

随着大数据技术的不断发展和创新,我们可以期待更多更好的大数据处理工具和平台的出现,为企业提供更加高效和智能的数据处理和分析解决方案。同时,Python作为一种广泛应用于数据科学和人工智能领域的编程语言,将继续在大数据领域发挥重要作用,为开发人员提供更多的创新和可能性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/519.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ros仿真启动小龟

1.启动RosMaster(管理Ros中各个节点的“大管家”,每次启动Ros时需要首先启动RosMaster) roscorefangfang-inspiron-5580:~/ros2/download/rosdistro$ roscore ... logging to /home/fang/.ros/log/6ec2d790-fe1d-11ee-aba8-1c1bb5cdec7c/ros…

java多线程-线程通信

简介 最常见的模式:生产者-消费者模式 线程通信模型 常见API 生产者抢到资源,生成资源,自己进入等待,唤醒消费者消费者抢到资源,消费数据,自己进入等待,唤醒生产者 定义容器 定义一个容器&#…

python/pygame 挑战魂斗罗 笔记(二)

一、建立地面碰撞体: 现在主角Bill能够站立在游戏地图的地面,是因为我们初始化的时候把Bill的位置固定了self.rect.y 250。而不是真正的站在地图的地面上。 背景地图是一个完整的地图,没有地面、台阶的概念,就无法通过碰撞检测来…

上位机图像处理和嵌入式模块部署(树莓派4b实现固件主流程)

【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 软件开发一般有软件需求、架构设计和详细设计、软件测试这四个部分。软件需求和软件测试都比较好理解,前者是说要实现哪些功能&#xf…

20240415,构造函数和析构函数,拷贝构造函数调用时机规则

目录 二,对象的初始化和清理 2.1 构造函数和析构函数 2.2 函数分类及调用 2.3 拷贝构造函数调用时机 2.4 构造函数调用规则 二,对象的初始化和清理 2.1 构造函数和析构函数 解决初始化和清理问题,编译器自动调用,如果不提…

C语言中的数据结构--双向链表

前言 上一节我们已经学习完了单链表(单向不带头不循环链表)的所有内容,我们在链表的分类里面知道了,链表分为单向的和双向的,那么本节我们就来进行双向链表(带头双向循环链表)的学习&#xff0c…

【CAD建模号】学习笔记(三):图形绘制区1

图形绘制区介绍 CAD建模号的图形绘制区可以绘制我们所需要的各种3D模型,绘制的图形即为模型对象,包括线、面、体等。 1. 二维图形绘制组 二维图形是建模的基础,大多数复杂的模型都是基于二维图形制作出来的,掌握二维图形的绘制等…

(六)Pandas文本数据 学习简要笔记 #Python #CDA学习打卡

一. 文本数据简介 1)定义 指不能参与算术运算的任何字符,也称为字符型数据。如英文字母、汉字、不作为数值使用的数字(以单引号开头)和其他可输入的字符。 文本数据虽不能参加算术运算,但其具有纬度高、量大且语义复杂等特点,因…

r3live 使用前提 雷达-相机外参标定 livox_camera_lidar_calibration

标定的是相机到雷达的,R3live下面配置的雷达到相机的,所以要把得到外参旋转矩阵求逆,再填入,平移矩阵则取负 港科大livox_camera_calib虽然操作方便,但是使用mid360雷达会有视角问题(投影三维点到相机),尝试了很多场景&#xff0c…

node-mysql数据库的下载与安装

01 mysql数据库的安装 网址:mysql.com/downloads/ 打开之后往下翻 点击 MySQL Community (GPL) Downloads 》 点击 MySRL Community Server 再点击 No thanks,just stant my download. 02 安装mysql 03 安装完成之后检查mysql服务是否开启 services.msc 04 启动…

排序算法之基数排序

目录 一、简介二、代码实现三、应用场景 一、简介 算法平均时间复杂度最好时间复杂度最坏时间复杂度空间复杂度排序方式稳定性基数排序O(n*k)O(n*k)O(n*k)O(nk)Out-place稳定 稳定:如果A原本在B前面,而AB,排序之后A仍然在B的前面&#xff1b…

实验室三大常用仪器3---交流毫伏表的使用方法(笔记)

目录 函数信号发生器、示波器、交流毫伏表如果连接 交流毫伏表的使用方法 测量值的读数问题 实验室三大常用仪器1---示波器的基本使用方法(笔记)-CSDN博客 实验室三大常用仪器2---函数信号发生器的基本使用方法(笔记)-CSDN博客…

对EKS(AWS云k8s)启用AMP(AWS云Prometheus)监控+AMG(AWS云 grafana)

问题 需要在针对已有的EKS k8s集群启用Prometheus指标监控。而且,这里使用AMP即AWS云的Prometheus托管服务。好像这个服务,只有AWS国际云才有,AWS中国云没得这个托管服务。下面,我们就来尝试在已有的EKS集群上面启用AMP监控。 步…

torch.gather用法详解

torch.gather是PyTorch中的一个函数,用于从源张量中按照指定的索引张量来收集数据。 基本语法如下, torch.gather(input, dim, index, *, sparse_gradFalse, outNone) → Tensor input:输入源张量dim:要收集数据的维度index&am…

2.4G射频收发芯片 KT8P01,非常适合超低功耗(ULP)的无线应用

KT8P01是一颗低成本、高性能的智能2.4 GHz射频收发芯片,内置单片机。KT8P01经过优化,提供了单芯片解决方案,适用于超低功耗(ULP)的无线应用。处理能力、存储器、低功率振荡器、实时计数器以及一系列省电模式的组合为RF…

SQL连接查询

连接查询: 同时涉及多个表的查询称为连接查询。 SQL中连接查询的主要类型 (1) 交叉连接(广义笛卡尔积) (2) 等值连接 (3) 自身连接 (4) 内连接 (5) 外连接 1.交叉连接 使用笛卡尔积运算的连接方式 笛卡尔积运算:设A&#xff…

基于Python的LSTM网络实现单特征预测回归任务(PyTorch版)

目录 一、数据集 二、任务目标 三、代码实现 1、从本地路径中读取数据文件 2、数据归一化 3、创建配置类,将LSTM的各个超参数声明为变量,便于后续使用 4、创建时间序列数据 5、划分数据集 6、将数据转化为PyTorch张量 7、将数据加载成迭代器 …

【栈】Leetcode 84. 柱状图中最大的矩形【困难】

柱状图中最大的矩形 给定 n 个非负整数,用来表示柱状图中各个柱子的高度。每个柱子彼此相邻,且宽度为 1 。 求在该柱状图中,能够勾勒出来的矩形的最大面积 示例 1: 输入:heights [2,1,5,6,2,3] 输出:10 解释&#…

[阅读笔记1][GPT-3]Language Models are Few-Shot Learners

首先讲一下GPT3这篇论文,文章标题是语言模型是小样本学习者,openai于2020年发表的。 这篇是在GPT2的基础上写的,由于GPT2还存在一些局限,这篇对之前的GPT2进行了一些完善。GPT2提出了多任务学习,也就是可以零样本地用在…

第九、十章 异常、模块、包以及数据可视化

第九章 异常、模块、包 异常 捕获异常 捕获常规异常 # 捕获常规异常 try:f open("D:/abc.txt", "r", encoding "UTF-8") except:print("出现异常了,因为文件不存在,我将open的模式,改为w模式去打开&qu…