大数据——HBase原理

摘要

HBase 是一个开源的、非关系型的分布式数据库系统,主要用于存储海量的结构化和半结构化数据。它是基于谷歌的 Bigtable 论文实现的,运行在 Hadoop 分布式文件系统(HDFS)之上,并且可以与 Hadoop 生态系统的其他组件无缝集成。

HBase 的设计目标是提供高可扩展性、实时读写和随机访问能力,这使其特别适合于需要快速处理和查询大数据集的应用场景。它采用行键(Row Key)作为主键,并使用列族(Column Family)来组织数据,数据在物理上按照行键的顺序存储,支持范围查询。

HBase 提供了强大的数据模型,支持版本控制和稀疏存储,同时还支持通过 MapReduce 进行批处理操作。它具有自动分片、负载均衡和故障恢复能力,确保了系统的高可用性和可靠性。HBase 常用于需要高吞吐量和低延迟的应用,如实时分析、日志处理和用户行为跟踪等。

HBase 的查询语言类似于 SQL,但更适合大规模分布式数据存储和处理。它与传统的关系数据库不同,不支持复杂的关系操作,如 JOIN 和事务处理,但通过灵活的设计和高效的存储模型,HBase 在大数据场景下表现出色。

1. HBase基础概念

HBase是一种分布式、可扩展、支持海量数据存储的 NoSQL 数据库。 逻辑上,HBase的数据模型同关系型数据库很类似,数据存储在一张表中,有行有列。但从HBase的底层物理存储结构(K-V)来看,HBase更像是一个multi-dimensional map。

HBase被称为内存数据库,主要是因为它的数据存储和读取主要依赖于内存,这使得HBase能够提供高性能的随机读写能力。 具体来说,HBase具备以下几个核心特性:

  1. HBase使用内存作为主要的数据缓存,大部分常用数据都被存储在内存中,这样可以大幅度提高数据读取的速度;
  2. HBase支持数据的实时随机访问,这是因为HBase的数据模型是基于列的,列数据存储在一起,可以快速定位到具体的数据;
  3. HBase设计了高效的写入策略,通过Write-Ahead Log (WAL)机制,数据首先被写入到内存中,然后再同步到硬盘,这样可以大幅度提高写入的效率。

2. HBase系统架构

Region Server:Region Server为 Region的管理者,其实现类为HRegionServer,主要作用如下:

  1. 对于数据的操作:get, put, delete;
  2. 对于Region的操作:splitRegion、compactRegion。

Master:Master是所有Region Server的管理者,其实现类为HMaster,主要作用如下:

  1. 对于表的操作:create, delete, alter
  2. 对于RegionServer的操作:分配regions到每个RegionServer,监控每个RegionServer的状态,负载均衡和故障转移。

Zookeeper:HBase通过Zookeeper来做Master的高可用、RegionServer的监控、元数据的入口以及集群配置的维护等工作。

HDFS:HDFS为HBase提供最终的底层数据存储服务,同时为HBase提供高可用的支持。

StoreFile:保存实际数据的物理文件,StoreFile以HFile的形式存储在HDFS上。每个Store会有一个或多个StoreFile(HFile),数据在每个StoreFile中都是有序的。

MemStore:写缓存,由于HFile中的数据要求是有序的,所以数据是先存储在MemStore中,排好序后,等到达刷写时机才会刷写到HFile,每次刷写都会形成一个新的HFile。

WAL:由于数据要经MemStore排序后才能刷写到HFile,但把数据保存在内存中会有很高的概率导致数据丢失,为了解决这个问题,数据会先写在一个叫做Write-Ahead logfile的文件中,然后再写入MemStore中。所以在系统出现故障的时候,数据可以通过这个日志文件重建

3. HBase数据模型

3.1. HBase逻辑结构

3.2. HBase物理结构

  1. Name Space:命名空间,类似于关系型数据库的DatabBase概念沐,与mysql的数据库的概念类似,每个命名空间下有多个表。HBase有两个自带的命名空间,分别是hbase和default,hbase中存放的是HBase内置的表,default表是用户默认使用的命名空间。
  2. Region:类似于关系型数据库的表概念。不同的是,HBase定义表时只需要声明列族即可,不需要声明具体的列。这意味着,往HBase写入数据时,字段可以动态、按需指定。因此和关系型数据库相比,HBase能够轻松应对字段变更的场景。
  3. Row:HBase表中的每行数据都由一个RowKey和多个Column(列)组成,数据是按照RowKey的字典顺序存储的,并且查询数据时只能根据RowKey进行检索,所以RowKey的设计十分重要。
  4. Column:HBase中的每个列都由Column Family(列族)和Column Qualifier(列限定符)进行限定,例如info:name,info:age。建表时,只需指明列族,而列限定符无需预先定义。
  5. Time Stamp:用于标识数据的不同版本(version),每条数据写入时,如果不指定时间戳,系统会自动为其加上该字段,其值为写入HBase的时间。
  6. Cell:由{rowkey, column Family:column Qualifier, time Stamp} 唯一确定的单元。cell中的数据是没有类型的,全部是字节码形式存贮。

4. HBase的函数API

4.1. HBase基本函数

# 进入HBase客户端命令行
bin/hbase shell# 查看当前数据库中有哪些表
hbase(main):002:0> list# 创建表
hbase(main):002:0> create 'student','info'# 插入数据
hbase(main):003:0> put 'student','1001','info:sex','male'
hbase(main):004:0> put 'student','1001','info:age','18'# 扫描查看表数据
hbase(main):008:0> scan 'student'
hbase(main):009:0> scan 'student',{STARTROW => '1001', STOPROW  => '1001'}
hbase(main):010:0> scan 'student',{STARTROW => '1001'}# 查看表结构
hbase(main):011:0> describe ‘student’# 更新指定字段的数据
hbase(main):012:0> put 'student','1001','info:name','Nick'
hbase(main):013:0> put 'student','1001','info:age','100'# 查看“指定行”或“指定列族:列”的数据
hbase(main):014:0> get 'student','1001'
hbase(main):015:0> get 'student','1001','info:name'# 统计表数据行数
hbase(main):021:0> count 'student'# 删除某rowkey的全部数据:
hbase(main):016:0> deleteall 'student','1001'# 删除某rowkey的某一列数据:
hbase(main):017:0> delete 'student','1002','info:sex'# 清空表数据 清空表student表
hbase(main):018:0> truncate 'student'# 删除表,首先需要先让该表为disable状态:
hbase(main):019:0> disable 'student'# 然后才能drop这个表:
hbase(main):020:0> drop 'student'如果直接drop表,会报错:ERROR: Table student is enabled. Disable it first.变更表信息,将info列族中的数据存放3个版本:
hbase(main):022:0> alter 'student',{NAME=>'info',VERSIONS=>3}
hbase(main):022:0> get 'student','1001',{COLUMN=>'info:name',VERSIONS=>3}

4.2. HBase基本API

DDL语句(表级别操作):

  1. 判断表是否存在
  2. 创建表
  3. 创建命名空间
  4. 删除表

DML语句(数据级别操作):

  1. 插入数据
  2. 查询数据
  3. 修改数据
  4. 删除数据

表的操作对象是HBaseAdmin admin

public static Configuration conf;
static{//使用HBaseConfiguration的单例方法实例化conf = HBaseConfiguration.create();conf.set("hbase.zookeeper.quorum", "192.166.9.102");conf.set("hbase.zookeeper.property.clientPort", "2181");
}
public static boolean isTableExist(String tableName) throws MasterNotRunningException,ZooKeeperConnectionException, IOException{//在HBase中管理、访问表需要先创建HBaseAdmin对象//Connection connection = ConnectionFactory.createConnection(conf);//HBaseAdmin admin = (HBaseAdmin) connection.getAdmin();HBaseAdmin admin = new HBaseAdmin(conf);return admin.tableExists(tableName);
}
public static void createTable(String tableName, String... columnFamily) throwsMasterNotRunningException, ZooKeeperConnectionException, IOException{HBaseAdmin admin = new HBaseAdmin(conf);//判断表是否存在if(isTableExist(tableName)){System.out.println("表" + tableName + "已存在");//System.exit(0);}else{//创建表属性对象,表名需要转字节HTableDescriptor descriptor = new HTableDescriptor(TableName.valueOf(tableName));//创建多个列族for(String cf : columnFamily){descriptor.addFamily(new HColumnDescriptor(cf));}//根据对表的配置,创建表admin.createTable(descriptor);System.out.println("表" + tableName + "创建成功!");}
}
public static void dropTable(String tableName) throws MasterNotRunningException,ZooKeeperConnectionException, IOException{HBaseAdmin admin = new HBaseAdmin(conf);if(isTableExist(tableName)){# 先disbale 在能实现删除表admin.disableTable(tableName);admin.deleteTable(tableName);System.out.println("表" + tableName + "删除成功!");}else{System.out.println("表" + tableName + "不存在!");}
}

数据操作对象是 HTable hTable

public static void addRowData(String tableName, String rowKey, String columnFamily, Stringcolumn, String value) throws IOException{//创建HTable对象 就是操作的对象HTable hTable = new HTable(conf, tableName);//向表中插入数据Put put = new Put(Bytes.toBytes(rowKey));//向Put对象中组装数据put.add(Bytes.toBytes(columnFamily), Bytes.toBytes(column), Bytes.toBytes(value));hTable.put(put);hTable.close();System.out.println("插入数据成功");
}
public static void deleteMultiRow(String tableName, String... rows) throws IOException{HTable hTable = new HTable(conf, tableName);List<Delete> deleteList = new ArrayList<Delete>();for(String row : rows){Delete delete = new Delete(Bytes.toBytes(row));deleteList.add(delete);}hTable.delete(deleteList);hTable.close();
}
public static void getAllRows(String tableName) throws IOException{HTable hTable = new HTable(conf, tableName);//得到用于扫描region的对象Scan scan = new Scan();//使用HTable得到resultcanner实现类的对象ResultScanner resultScanner = hTable.getScanner(scan);for(Result result : resultScanner){Cell[] cells = result.rawCells();for(Cell cell : cells){//得到rowkeySystem.out.println("行键:" + Bytes.toString(CellUtil.cloneRow(cell)));//得到列族System.out.println("列族" + Bytes.toString(CellUtil.cloneFamily(cell)));System.out.println("列:" + Bytes.toString(CellUtil.cloneQualifier(cell)));System.out.println("值:" + Bytes.toString(CellUtil.cloneValue(cell)));}}
public static void getRow(String tableName, String rowKey) throws IOException{HTable table = new HTable(conf, tableName);Get get = new Get(Bytes.toBytes(rowKey));//get.setMaxVersions();显示所有版本//get.setTimeStamp();显示指定时间戳的版本Result result = table.get(get);for(Cell cell : result.rawCells()){System.out.println("行键:" + Bytes.toString(result.getRow()));System.out.println("列族" + Bytes.toString(CellUtil.cloneFamily(cell)));System.out.println("列:" + Bytes.toString(CellUtil.cloneQualifier(cell)));System.out.println("值:" + Bytes.toString(CellUtil.cloneValue(cell)));System.out.println("时间戳:" + cell.getTimestamp());}
}
public static void getRowQualifier(String tableName, String rowKey, String family, Stringqualifier) throws IOException{HTable table = new HTable(conf, tableName);Get get = new Get(Bytes.toBytes(rowKey));get.addColumn(Bytes.toBytes(family), Bytes.toBytes(qualifier));Result result = table.get(get);for(Cell cell : result.rawCells()){System.out.println("行键:" + Bytes.toString(result.getRow()));System.out.println("列族" + Bytes.toString(CellUtil.cloneFamily(cell)));System.out.println("列:" + Bytes.toString(CellUtil.cloneQualifier(cell)));System.out.println("值:" + Bytes.toString(CellUtil.cloneValue(cell)));}
}

5. HBase的写流程(与Rocketmq写类似)

写流程:

  1. Client先访问zookeeper,获取hbase:meta表位于哪个Region Server。
  2. 访问对应的Region Server,获取hbase:meta表,根据读请求的namespace:table/rowkey,查询出目标数据位于哪个Region Server中的哪个Region中。并将该table的region信息以及meta表的位置信息缓存在客户端的meta cache,方便下次访问。
  3. 与目标Region Server进行通讯;
  4. 数据顺序写入(追加)到WAL
  5. 数据写入对应的MemStore,数据会在MemStore进行排序;
  6. 向客户端发送ack;
  7. 等达到MemStore的刷写时机后,将数据刷写到HFile。

6. HBase的读流程(读比写慢数据库)

HBase的读写流程是先把磁盘和内存的数据一起读区出来,然后在进行的merge。

读流程

  1. Client先访问zookeeper,获取hbase:meta表位于哪个Region Server。
  2. 访问对应的Region Server,获取hbase:meta表,根据读请求的namespace:table/rowkey,查询出目标数据位于哪个Region Server中的哪个Region中。并将该table的region信息以及meta表的位置信息缓存在客户端的meta cache,方便下次访问。
  3. 与目标Region Server进行通讯;
  4. 分别在Block Cache(读缓存),MemStore和Store File(HFile)中查询目标数据,并将查到的所有数据进行合并。此处所有数据是指同一条数据的不同版本(time stamp)或者不同的类型(Put/Delete)。
  5. 将从文件中查询到的数据块(Block,HFile数据存储单元,默认大小为64KB)缓存到Block Cache。
  6. 将合并后的最终结果返回给客户端。

7. HBase的Flush流程(数据刷盘机制,与mysql的数据刷盘类似)

MemStore刷写时机:

  1. 当某个memstroe的大小达到了hbase.hregion.memstore.flush.size(默认值128M),其所在region的所有memstore都会刷写。当memstore的大小达到了 hbase.hregion.memstore.flush.size(默认值128M),*hbase.hregion.memstore.block.multiplier(默认值4)时,会阻止继续往该memstore写数据。
  2. 当region server中memstore的总大小达到 java_heapsize,*hbase.regionserver.global.memstore.size(默认值0.4)*hbase.regionserver.global.memstore.size.lower.limit(默认值0.95)
  3. region会按照其所有memstore的大小顺序(由大到小)依次进行刷写。直到region server中所有memstore的总大小减小到上述值以下。
  4. 当region server中memstore的总大小达到 java_heapsize ,*hbase.regionserver.global.memstore.size(默认值0.4)时,会阻止继续往所有的memstore写数据。
  5. 到达自动刷写的时间,也会触发memstore flush。自动刷新的时间间隔由该属性进行配置hbase.regionserver.optionalcacheflushinterval(默认1小时)
  6. 当WAL文件的数量超过hbase.regionserver.max.logs,region会按照时间顺序依次进行刷写,直到WAL文件数量减小到hbase.regionserver.max.log以下(该属性名已经废弃,现无需手动设置,最大值为32)。

8. HBase的StoreFile Compact流程(小文件合并)

由于memstore每次刷写都会生成一个新的HFile,且同一个字段的不同版本(timestamp)和不同类型(Put/Delete)有可能会分布在不同的HFile中,因此查询时需要遍历所有的HFile。为了减少HFile的个数,以及清理掉过期和删除的数据,会进行StoreFile Compaction。

Compaction分为两种,分别是Minor Compaction和Major Compaction。Minor Compaction会将临近的若干个较小的HFile合并成一个较大的HFile,但不会清理过期和删除的数据。Major Compaction会将一个Store下的所有的HFile合并成一个大HFile,并且清理掉过期和删除的数据。

9. HBase的Region切分流程(大文件拆分)

默认情况下,每个Table起初只有一个Region,随着数据的不断写入,Region会自动进行拆分。刚拆分时,两个子Region都位于当前的Region Server,但处于负载均衡的考虑,HMaster有可能会将某个Region转移给其他的Region Server。

Region Split时机:

  1. 当1个region中的某个Store下所有StoreFile的总大小超过hbase.hregion.max.filesize,该Region就会进行拆分(0.94版本之前)。
  2. 当1个region中的某个Store下所有StoreFile的总大小超过Min(R^2 * "hbase.hregion.memstore.flush.size",hbase.hregion.max.filesize"),该Region就会进行拆分,其中R为当前Region Server中属于该Table的个数(0.94版本之后)

10. HBase的数据删除流程

  1. 逻辑删除: HBase不会立即在物理存储上删除数据,而是采用逻辑删除的方式。当执行删除操作时,HBase会将一条特殊的删除标记(Tombstone)插入到相应的数据单元中。这个删除标记指示这个数据单元已被删除,并且会在数据保留的时间后清理掉。
  2. Major Compaction(主要合并): HBase定期执行Major Compaction操作,它会合并和清理数据文件,删除标记和过期数据。Major Compaction将不再需要的数据清理掉,从而释放磁盘空间,并提高读取性能。
  3. Minor Compaction(次要合并): 在Major Compaction之外,HBase还执行Minor Compaction,它用于合并较小的数据文件以优化存储布局,但不会清理删除标记。
  4. 删除标记的清理: 当Major Compaction执行时,HBase会检查数据单元中的删除标记,如果数据的所有版本都已被标记为删除,则在Major Compaction中清理掉这些数据。

需要注意的是,HBase的删除操作并不是实时的,而是通过Compaction过程逐步进行的。这意味着一条数据的删除标记可能会在Compaction之前存在一段时间,直到Compaction执行并将其清理。这种机制有助于保持HBase的高性能和高吞吐量,同时确保数据的持久性和一致性。总之,HBase通过逻辑删除和Compaction机制来处理数据的删除操作。删除数据会在逻辑上插入删除标记,而实际的物理清理会在Compaction过程中进行。这种机制可以平衡数据的删除和性能需求,确保数据的有效管理和存储。

11. HBase的优化设计

11.1. HBase的Master的高可用设计

在HBase中HMaster负责监控HRegionServer的生命周期,均衡RegionServer的负载,如果HMaster挂掉了,那么整个HBase集群将陷入不健康的状态,并且此时的工作状态并不会维持太久。所以HBase支持对HMaster的高可用配置。

关闭HBase集群(如果没有开启则跳过此步)
[xjl@hadoop102 hbase]$ bin/stop-hbase.sh在conf目录下创建backup-masters文件
[xjl@hadoop102 hbase]$ touch conf/backup-masters在backup-masters文件中配置高可用HMaster节点
[xjl@hadoop102 hbase]$ echo hadoop103 > conf/backup-masters将整个conf目录scp到其他节点
[xjl@hadoop102 hbase]$ scp -r conf/ hadoop103:/opt/module/hbase/
[xjl@hadoop102 hbase]$ scp -r conf/ hadoop104:/opt/module/hbase/打开页面测试查看

11.2. HBase的预分区设计

每一个region维护着StartRow与EndRow,如果加入的数据符合某个Region维护的RowKey范围,则该数据交给这个Region维护。那么依照这个原则,我们可以将数据所要投放的分区提前大致的规划好,以提高HBase性能。

# 手动设定预分区
Hbase> create 'staff1','info','partition1',SPLITS => ['1000','2000','3000','4000']# 生成16进制序列预分区
create 'staff2','info','partition2',{NUMREGIONS => 15, SPLITALGO => 'HexStringSplit'}# 按照文件中设置的规则预分区
创建splits.txt文件内容如下:
aaaa
bbbb
cccc
dddd
然后执行:
create 'staff3','partition3',SPLITS_FILE => 'splits.txt'# 使用JavaAPI创建预分区//自定义算法,产生一系列hash散列值存储在二维数组中byte[][] splitKeys = 某个散列值函数//创建HbaseAdmin实例HBaseAdmin hAdmin = new HBaseAdmin(HbaseConfiguration.create());//创建HTableDescriptor实例HTableDescriptor tableDesc = new HTableDescriptor(tableName);//通过HTableDescriptor实例和散列值二维数组创建带有预分区的Hbase表hAdmin.createTable(tableDesc, splitKeys);

11.3. HBase的RowKey设计(随机性,防止数据倾斜)

一条数据的唯一标识就是RowKey,那么这条数据存储于哪个分区,取决于RowKey处于哪个一个预分区的区间内,设计RowKey的主要目的,就是让数据均匀的分布于所有的region中,在一定程度上防止数据倾斜。接下来我们就谈一谈RowKey常用的设计方案。

# 生成随机数、hash、散列值
比如:
原本rowKey为1001的,SHA1后变成:dd01903921ea24941c26a48f2cec24e0bb0e8cc7
原本rowKey为3001的,SHA1后变成:49042c54de64a1e9bf0b33e00245660ef92dc7bd
原本rowKey为5001的,SHA1后变成:7b61dec07e02c188790670af43e717f0f46e8913
在做此操作之前,一般我们会选择从数据集中抽取样本,来决定什么样的rowKey来Hash后作为每个分区的临界值。# 字符串反转
20170524000001转成10000042507102
20170524000002转成20000042507102
这样也可以在一定程度上散列逐步put进来的数据。# 字符串拼接
20170524000001_a12e
20170524000001_93i7

11.4. HBase的内存优化

HBase操作过程中需要大量的内存开销,毕竟Table是可以缓存在内存中的,一般会分配整个可用内存的70%给HBase的Java堆。但是不建议分配非常大的堆内存,因为GC过程持续太久会导致RegionServer处于长期不可用状态,一般16~48G内存就可以了,如果因为框架占用内存过高导致系统内存不足,框架一样会被系统服务拖死。

11.5. HBase基础优化

1.允许在HDFS的文件中追加内容
hdfs-site.xml、hbase-site.xml
属性:dfs.support.append
解释:开启HDFS追加同步,可以优秀的配合HBase的数据同步和持久化。默认值为true。2.优化DataNode允许的最大文件打开数
hdfs-site.xml
属性:dfs.datanode.max.transfer.threads
解释:HBase一般都会同一时间操作大量的文件,根据集群的数量和规模以及数据动作,设置为4096或者更高。默认值:40963.优化延迟高的数据操作的等待时间
hdfs-site.xml
属性:dfs.image.transfer.timeout
解释:如果对于某一次数据操作来讲,延迟非常高,socket需要等待更长的时间,建议把该值设置为更大的值(默认60000毫秒),以确保socket不会被timeout掉。4.优化数据的写入效率
mapred-site.xml
属性:
mapreduce.map.output.compress
mapreduce.map.output.compress.codec
解释:开启这两个数据可以大大提高文件的写入效率,减少写入时间。第一个属性值修改为true,第二个属性值修改为:org.apache.hadoop.io.compress.GzipCodec或者其他压缩方式。5.设置RPC监听数量
hbase-site.xml
属性:Hbase.regionserver.handler.count
解释:默认值为30,用于指定RPC监听的数量,可以根据客户端的请求数进行调整,读写请求较多时,增加此值。6.优化HStore文件大小
hbase-site.xml
属性:hbase.hregion.max.filesize
解释:默认值10737418240(10GB),如果需要运行HBase的MR任务,可以减小此值,因为一个region对应一个map任务,如果单个region过大,会导致map任务执行时间过长。该值的意思就是,如果HFile的大小达到这个数值,则这个region会被切分为两个Hfile。7.优化HBase客户端缓存
hbase-site.xml
属性:hbase.client.write.buffer
解释:用于指定Hbase客户端缓存,增大该值可以减少RPC调用次数,但是会消耗更多内存,反之则反之。一般我们需要设定一定的缓存大小,以达到减少RPC次数的目的。8.指定scan.next扫描HBase所获取的行数
hbase-site.xml
属性:hbase.client.scanner.caching
解释:用于指定scan.next方法获取的默认行数,值越大,消耗内存越大。9.flush、compact、split机制
当MemStore达到阈值,将Memstore中的数据Flush进Storefile;compact机制则是把flush出来的小文件合并成大的Storefile文件。split则是当Region达到阈值,会把过大的Region一分为二。
涉及属性:
即:128M就是Memstore的默认阈值
hbase.hregion.memstore.flush.size:134217728
即:这个参数的作用是当单个HRegion内所有的Memstore大小总和超过指定值时,flush该HRegion的所有memstore。RegionServer的flush是通过将请求添加一个队列,模拟生产消费模型来异步处理的。那这里就有一个问题,当队列来不及消费,产生大量积压请求时,可能会导致内存陡增,最坏的情况是触发OOM。
hbase.regionserver.global.memstore.upperLimit:0.4
hbase.regionserver.global.memstore.lowerLimit:0.38
即:当MemStore使用内存总量达到hbase.regionserver.global.memstore.upperLimit指定值时,将会有多个MemStores flush到文件中,MemStore flush 顺序是按照大小降序执行的,直到刷新到MemStore使用内存略小于lowerLimit

博文参考

https://www.cnblogs.com/datadance/p/16327298.html

https://www.cnblogs.com/datadance/p/16327298.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/50859.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

太美了!智能汽车触摸屏中控让驾驶员和乘客目不转睛

太美了&#xff01;智能汽车触摸屏中控让驾驶员和乘客目不转睛 引言 艾斯视觉作为行业ui设计和前端开发领域的从业者&#xff0c;其观点始终认为&#xff1a;智能汽车已经成为现代交通的新宠。其中&#xff0c;触摸屏中控系统以其美观、智能、人性化的特点&#xff0c;为驾驶…

在线投稿小程序的设计

管理员账户功能包括&#xff1a;系统首页&#xff0c;个人中心&#xff0c;用户管理&#xff0c;编辑管理&#xff0c;用户文章管理&#xff0c;文章分类管理&#xff0c;文章展示管理&#xff0c;文章稿酬管理&#xff0c;通知公告管理&#xff0c;系统管理 微信端账号功能包…

59 阻塞和非阻塞IO

阻塞式io 一个简单的用户输入回显功能&#xff0c;在用户未输入内容时&#xff0c;会一直阻塞住 #include <iostream> #include <unistd.h>using namespace std; int main() {char buff[1024];while (true){cout << "please enter ";fflush(stdo…

VAD: 向量化场景表示,用于高效的自动驾驶

VAD: Vectorized Scene Representation for Efficient Autonomous Driving VAD: 向量化场景表示&#xff0c;用于高效的自动驾驶 https://github.com/hustvl/VAD Abstract Autonomous driving requires a comprehensive understanding of the surrounding environment for …

英语单词终极记忆

你应当知道一个专业术语&#xff0c;叫COCA。 这个单词很好记&#xff0c;但你可能记不住。 你应当这样记&#xff1a; 你记住了 可口可乐&#xff0c;也就记住了 coca &#xff08;谐音&#xff1a;可口&#xff09;。 从而记住了 COCA。 无论如何&#xff0c;你这辈子&…

react版本判断是否面包含

react-admin: react版本 import { useState,useEffect } from react import ./Secene.css import { Checkbox } from "antd"; import* as turf from turf/turf; import type { CheckboxProps } from antd; // const onChange: CheckboxProps[onChange] (e) >…

Spring Boot + Spring Batch + Quartz 整合定时批量任务

​ 博客主页: 南来_北往 系列专栏&#xff1a;Spring Boot实战 前言 最近一周&#xff0c;被借调到其他部门&#xff0c;赶一个紧急需求&#xff0c;需求内容如下&#xff1a; PC网页触发一条设备升级记录&#xff08;下图&#xff09;&#xff0c;后台要定时批量设备更…

第15周 Zookeeper分布式锁与变种多级缓存

Zookeeper **************************************************************

Python客户端操作Elasticsearch

一.Python与Elasticsearch交互示例 这段代码是使用Python的elasticsearch模块与Elasticsearch进行交互的示例&#xff1a; from elasticsearch import Elasticsearch# 一.创建连接 # 建立到Elasticsearch的连接&#xff0c;指定主机和端口&#xff0c;设置请求超时时间为3600…

【C语言篇】C语言数据类型和变量

文章目录 C语言数据类型和变量1. 数据类型介绍1.1 字符型1.2 整形1.3 浮点型1.4 布尔类型1.5 各种类型数据长度1.5.1 sizeof操作符1.5.2 数据类型长度1.5.3 sizeof表达式不计算 2. signed和unsigned3. 数据类型的取值范围4. 变量4.1变量的创建4.2 变量的分类 5.强制类型转换 C语…

【C语言】【数据结构】二分查找(数组的练习)

目录 一、什么是二分查找 二、算法思想 2.1、概述 2.2、举例 &#xff08;1&#xff09;查找3&#xff08;数组里面存在的数&#xff09; &#xff08;2&#xff09;查找12&#xff08;数组里面不存在的数&#xff09; 三、代码实现 四、计算mid公式的优化 一、…

【03】Java虚拟机是如何加载Java类的

从class文件到内存中的类&#xff0c;按先后顺序需要经过加载、链接以及初始化三个步骤 一、加载 加载就是查找字节流&#xff0c;并且据此创建类的过程。 除了启动类加载器&#xff08;所有类加载器的祖师爷&#xff0c;由C实现&#xff0c;没有对应的Java对象&#xff09;之外…

大话成像公众号文章阅读学习(二)--- 下一代 AI-ISP会更好

系列文章目录 文章目录 系列文章目录前言一、AI-ISP1.1 定义与工作原理1.2 应用场景 二、展望总结 前言 这篇是 下一代 AI-ISP会更好 文章地址&#xff1a;https://mp.weixin.qq.com/s/N3YnkXF_stvP6k3jRTKCpQ 一、AI-ISP 1.1 定义与工作原理 定义&#xff1a;AI-ISP&#…

GEE:多面板同步缩放查看多源数据,并实现交互选点构建NDVI曲线

一. 目标 ①构建三个面板&#xff0c;分别显示不同来源数据&#xff1b; ②面板1显示哨兵数据面版2显示谷歌高清数据面板3实现用户任意交互选点&#xff0c;并以该点为中心构建正方形&#xff0c;随后生成该正方形的区域NDVI平均值长时序曲线&#xff1b; ③保证前两个面板可…

19.延迟队列优化

问题 前面所讲的延迟队列有一个不足之处&#xff0c;比如现在有一个需求需要延迟半个小时的消息&#xff0c;那么就只有添加一个新的队列。那就意味着&#xff0c;每新增一个不同时间需求&#xff0c;就会新创建一个队列。 解决方案 应该讲消息的时间不要跟队列绑定&#xf…

27、美国国家冰雪中心(NSIDC)海冰密集度月数据下载与处理

文章目录 一、前言二、数据下载三、使用Ponply查看数据结构四、代码一、前言 处理美国国家冰雪中心(NSIDC)的海冰密集度月度数据时,坐标转换是一个重要的步骤。NSIDC提供的数据通常采用极地球面坐标系,需要将其转换为常用的地理坐标系(如经纬度)以便进行分析和可视化。 坐…

python debug怎么用

1.打开pycharm&#xff0c;新建一个python程序&#xff0c;命名为excel.py。 2.直接贴出代码&#xff0c;如果是hello world就不存调试的问题了&#xff01; 3.介绍调试的菜单操作&#xff0c;在【菜单栏】选择【RUN】&#xff0c;下拉菜单里选择【debug excel.py】或者【Debug…

【C++】类与对象--初始化列表,类型转换,static,友元

文章目录 前言一、初始化列表1.1 初始化列表概述1.2 初始化列表注意事项初始化列表代码示例 二、类类型转换2.1 类类型转换2.2 代码示例 三.static成员3.1 静态成员变量3.2 代码示例 四.友元4.1友元概述4.2 友元特点4.3 友元代码示例 五.内部类5.1 内部类特点5.2 代码示例 六.匿…

掀桌子了!原来是咱们的大屏设计太酷,吓着前端开发老铁了

掀桌子了&#xff01;原来是咱们的大屏设计太酷&#xff0c;吓着前端开发老铁了 艾斯视觉观点认为&#xff1a;在软件开发的世界里&#xff0c;有时候创意和设计的火花会擦得特别亮&#xff0c;以至于让技术实现的伙伴们感到既兴奋又紧张。这不&#xff0c;我们的设计团队刚刚…

利用AI能力实现一个生成掘金、CSDN文章的总结并生成思维脑图

背景 为了快速了解文章重点&#xff01;&#xff01; 设计思路 1、根据文章链接、获取文章内容 2、编写 prompt 3、利用 markmap 显示思维导图 实现 获取文章内容 利用爬虫技术&#xff0c;简单利用 axios 获取链接内容&#xff0c;然后通过 cheerio 获取相关元素。 编码…