R语言实现神经网络ANN

# 常用激活函数
# 自定义Sigmoid函数
sigmod <- function(x){return(1/(1+exp(-x)))
}
# 绘制Sigmoid曲线
x <- seq(-10,10,length.out = 100)
plot(x,sigmod(x),type = 'l',col = 'blue',lwd = 2,xlab = NA,ylab = NA,main = 'Sigmoid函数曲线')# 自定义Tanh函数
tanh <- function(x){return((exp(x)-exp(-x))/(exp(x)+exp(-x)))
}
# 绘制Tanh曲线
x <- seq(-10,10,length.out = 100)
plot(x,tanh(x),type = 'l',col = 'blue',lwd = 2,xlab = NA,ylab = NA,main = 'Tanh函数曲线')# 自定义ReLU函数
relu <- function(x){return(ifelse(x<0,0,x))
}
# 绘制ReLu曲线
x <- seq(-6,6,length.out = 100)
plot(x,relu(x),type = 'l',col = 'blue',lwd = 2,xlab = NA,ylab = NA,main = 'ReLU函数曲线')
grid()###  11.3	案例-对iris进行类别预测  ###
# 数据分区
# install.packages("caret")
set.seed(1234) # 设置随机种子
library(caret)
ind <- createDataPartition(iris$Species,p = 0.5,list = FALSE) 
train <- iris[ind,] # 训练集
test <- iris[-ind,] # 测试集##  1.	利用nnet包神经网络模型 ##
# 训练神经网络模型
set.seed(1234)
library(nnet)
iris.nnet <- nnet(Species ~ ., data = train,size = 2,rang = 0.1,decay = 5e-4,maxit = 200)# 调用summary()函数查看训练好的神经网络信息 
summary(iris.nnet)# 对生成的神经网络进行可视化
#install.packages('reshape')
library(reshape)
source('nnet_plot_update.r')
plot.nnet(iris.nnet)iris.nnet$wts # 查看各节点的连接权重值
iris.nnet$value # 查看迭代结束时的损失函数值
head(iris.nnet$fitted.values) # 查看训练集各观测点的预测概率# 对test进行预测
iris_nnet_pred <- predict(iris.nnet,newdata = test,type = 'class') 
(iris_nnet_pred_table  <- table('actual' = test$Species,'prediction' = iris_nnet_pred)) # 查看混淆矩阵
sum(diag(iris_nnet_pred_table)) / sum(iris_nnet_pred_table) # 查看模型准确率##  2.利用neuralnet包神经网络模型 ##
# 对因子型的因变量进行哑变量处理
dmy1 <- dummyVars(~.,data = train,levelsOnly = TRUE)
train_dmy <- predict(dmy1,newdata = train)
test_dmy <- predict(dmy1,newdata = test)
head(train_dmy,3)
head(test_dmy,3)# 训练神经网络模型
set.seed(1234)
library(neuralnet)
iris_neuralnet <- neuralnet(setosa + versicolor + virginica ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width,data = train_dmy,hidden = 3) # 构建模型iris_neuralnet$result.matrix # 输出结果矩阵plot(iris_neuralnet) # 模型可视化# 对test进行预测,生成相关的预测概率矩阵
iris_neuralnet_predict <- compute(iris_neuralnet,test_dmy[,1:4])$net.result 
head(iris_neuralnet_predict,3)# 得到可能的类别
iris_neuralnet_pred <- unique(test$Species)[apply(iris_neuralnet_predict,1,which.max)]
head(iris_neuralnet_pred,3)(iris_neuralnet_pred_table  <- table('actual' = test$Species,'prediction' = iris_neuralnet_pred)) # 查看混淆矩阵
sum(diag(iris_neuralnet_pred_table)) / sum(iris_neuralnet_pred_table) # 查看模型准确率##  3.利用AMORE包训练神经网络模型 ##
# 指定lib包路径
.libPaths()
.libPaths("C:/Users/VICTUS/AppData/Local/R/win-library/4.4")# 回归问题的神经网络模型
iris1 <- iris[,1:4]
# 对前三列进行标准化
iris1[,1:3] <- apply(iris1[,1:3],2,scale)
# 加载AMORE包
#install.packages("AMORE",type="binary")
library(AMORE)
# 建立神经网络模型,输入层有3个神经元,输出层有一个神经元,这里增加了两个隐藏层,分别具有10,5个神经元。
newNet <- newff(n.neurons = c(3,10,5,1),learning.rate.global=1e-4,momentum.global=0.05,error.criterium="LMS", Stao=NA, hidden.layer="sigmoid", output.layer="purelin", method="ADAPTgdwm")
# 使用train函数,基于训练数据对神经网络进行训练
newNet.train <- train(newNet,iris1[,1:3],iris1[,4],report = TRUE,show.step = 100,n.shows = 10)
# 基于训练好的模型,对iris1进行预测,并计算均方误差
pred <- sim(newNet.train$net,iris1[,1:3])
error <- sqrt(sum(pred-iris1$Petal.Width)^2)
error##  4.利用RSNNS包训练神经网络模型 ##
library(Rcpp)
library(RSNNS)
set.seed(12)
# 准备数据
# 将因变量进行哑变量处理
library(caret)
dmy <- dummyVars(~.,data = iris,levelsOnly = TRUE)
iris1 <- predict(dmy,newdata = iris)
# 将自变量进行标准化处理
iris1[,1:4] <- apply(iris[,1:4],2,scale)
# 将数据进行分区
ind <- createDataPartition(iris$Species,p = 0.8,list = FALSE) 
train <- iris1[ind,] # 训练集
test <- iris1[-ind,] # 测试集
# 使用mlp()函数,建立具有两个隐藏层,分别具有神经元数量为8,4的多层感知器网络
mlp.nnet <- mlp(train[,1:4],train[,5:7],size = c(8,4), learnFunc="Quickprop", learnFuncParams=c(0.1, 2.0, 0.0001, 0.1),maxit=100)
#利用上面建立的模型进行预测, 得到预测概率矩阵
pred_prob = predict(mlp.nnet,test[,1:4])
head(pred_prob,3)
# 然后,通过找到概率最大的那一列,得到其他可能的类别
pred_class <- unique(iris[-ind,]$Species)[apply(pred_prob,1,which.max)]
#生成混淆矩阵,观察预测精度 
table('actual' = iris[-ind,]$Species,'prediction'= pred_class)
sum(diag(table('actual' = iris[-ind,]$Species,'prediction'= pred_class))) / nrow(test)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/47320.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Qt QProcess 进程间通信读写数据通信

本文介绍了如何使用Qt的QProcess 进行程序开发&#xff0c;包括启动进程间通信、设置环境变量、通用方法&#xff1b;方便在日常开发中使用&#xff1b; 1.使用Qt进行程序开发&#xff0c;可以通过QProcess类用于启动外部程序并与其进行通信.&#xff1b; 进程A&#xff08;…

微服务设计原则——高性能:锁

文章目录 1.锁的问题2.无锁2.1 串行无锁2.2 无锁数据结构 3.减少锁竞争参考文献 1.锁的问题 高性能系统中使用锁&#xff0c;往往带来的坏处要大于好处。 并发编程中&#xff0c;锁带解决了安全问题&#xff0c;同时也带来了性能问题&#xff0c;因为锁让并发处理变成了串行操…

海外营销推广:快速创建维基百科(wiki)词条-大舍传媒

一、维基百科的永久留存问题 许多企业和个人关心维基百科是否能永久留存。实际上&#xff0c;只要企业和个人的行为没有引起维基百科管理方的反感&#xff0c;词条就可以长期保存。如果有恶意行为或被投诉&#xff0c;维基百科可能会对词条进行删除或修改。 二、创建维基百科…

TCP与UDP网络编程

网络通信协议 java.net 包中提供了两种常见的网络协议的支持: UDP&#xff1a;用户数据报协议(User Datagram Protocol)TCP&#xff1a;传输控制协议(Transmission Control Protocol) TCP协议与UDP协议 TCP协议 TCP协议进行通信的两个应用进程&#xff1a;客户端、服务端 …

好玩的调度技术-场景编辑器

好玩的调度技术-场景编辑器 文章目录 好玩的调度技术-场景编辑器前言一、演示一、代码总结好玩系列 前言 这两天写前端写上瘾了&#xff0c;顺手做了个好玩的东西&#xff0c;好玩系列也好久没更新&#xff0c;正好作为素材写一篇文章&#xff0c;我真的觉得蛮好玩的&#xff…

LinuxShell编程1———shell基础命令

文章目录 前言 一、shell基础知识 1、shell概念 2、Shell的功能 接收&#xff1a;用户命令 调用&#xff1a;相应的应用程序 解释并交给&#xff1a;内核去处理 返还&#xff1a;内核处理结果 3、Shell种类&#xff08;了解&#xff09; 3.1、MS-DOS 3.2、Windows的…

R语言进行K折交叉验证问题

在使用R语言进行模型参数评估优化时候&#xff0c;会使用K折交叉验证&#xff0c;其中会遇到各种各样问题&#xff1a; 错误: C5.0 models require a factor outcome > (1-mean(E0));(1-mean(E1)) [1] 1 [1] 1 报错说明C5.0模型需要因子变量输出&#xff0c;源代码如下&am…

无人机技术优势及发展详解

一、技术优势 无人机&#xff08;Unmanned Aerial Vehicle&#xff0c;UAV&#xff09;作为一种新兴的空中智能平台&#xff0c;凭借其独特的技术优势&#xff0c;已经在众多领域中展现出强大的应用潜力和实用价值。以下是无人机的主要技术优势&#xff1a; 1. 自主导航与远程…

【Harmony】SCU暑期实训鸿蒙开发学习日记Day2

目录 Git 参考文章 常用操作 ArkTS的网络编程 Http编程 发送请求 GET POST 处理响应 JSON数据解析 处理响应头 错误处理 Web组件 用生命周期钩子实现登录验证功能 思路 代码示例 解读 纯记录学习日记&#xff0c;杂乱&#xff0c;误点的师傅可以掉了&#x1…

How to integrate GPT-4 model hosted on Azure with the gptstudio package

题意&#xff1a;怎样将托管在Azure上的GPT-4模型与gptstudio包集成&#xff1f; 问题背景&#xff1a; I am looking to integrate the OpenAI GPT-4 model into my application. Here are the details I have: Endpoint: https://xxxxxxxxxxxxxxx.openai.azure.com/Locatio…

LG 选择 Flutter 来增强其智能电视操作系统 webOS

可以这个话题会让大多数人困惑&#xff0c;2024 年了为什么还会冒出 webOS 这种老古董&#xff1f;然后 LG 为什么选择 webOS &#xff1f;现在为什么又选择 Flutter &#xff1f; 其实早在 Google I/O 发布 Flutter 3.22 版本的时候&#xff0c;就提到了 LG 选择 Flutter 来增…

tinymce富文本支持word内容同时粘贴文字图片上传 vue2

效果图 先放文件 文件自取tinymce: tinymce富文本简单配置及word内容粘贴图片上传 封装tinymce 文件自取&#xff1a;tinymce: tinymce富文本简单配置及word内容粘贴图片上传 页面引用组件 <TinymceSimplify refTinymceSimplify v-model"knowledgeBlockItem.content…

【leetcode】 字符串相乘(大数相乘、相加)

记录一下大数相乘相加方法&#xff1a; 给定两个以字符串形式表示的非负整数 num1 和 num2&#xff0c;返回 num1 和 num2 的乘积&#xff0c;它们的乘积也表示为字符串形式。 注意&#xff1a;不能使用任何内置的 BigInteger 库或直接将输入转换为整数。 示例 1: 输入: nu…

vue3前端开发-执行npm run dev提示报错怎么解决

vue3前端开发-执行npm run dev提示报错怎么解决&#xff01;今天在本地安装初始化了一个vue3的案例demo。但是当我执行npm run dev想启动它时报错了说&#xff0c;找不到dev。让我检查package.json文件是否包含dev。如下图所示&#xff1a; 实际上&#xff0c;不必惊慌&#xf…

iOS ------ tagged Pointer 内存对齐

一&#xff0c;tagged Pointer 为了节省内存和提高执行效率&#xff0c;苹果在64bit程序中引入了Tagged Pointer计数&#xff0c;用于优化NSNumber, NSDate, NSString等小对象的存储。一个指针或地址区域&#xff0c;除了放对象地址之外&#xff0c;也可以放其他额外的信息&am…

240717.LeetCode——2974.最小数字游戏

题目描述 你有一个下标从 0 开始、长度为 偶数 的整数数组 nums &#xff0c;同时还有一个空数组 arr 。Alice 和 Bob 决定玩一个游戏&#xff0c;游戏中每一轮 Alice 和 Bob 都会各自执行一次操作。游戏规则如下&#xff1a; 每一轮&#xff0c;Alice 先从 nums 中移除一个 …

转移C盘中的conda环境(包括.condarc文件修改,environment.txt文件修改,conda报错)

conda环境一般是默认安装到C盘的&#xff0c;若建立多个虚拟环境&#xff0c;时间长了&#xff0c;容易让本不富裕的C盘更加雪上加霜&#xff0c;下面给出将conda环境从C盘转移到D盘的方法。 目录 电脑软硬件转移方法查看当前conda目录转移操作第一步&#xff1a;.condarc文件修…

Apache Flink 入门

零、概述 Apache Flink 是一个高性能的开源分布式流处理框架&#xff0c;专注于实时数据流的处理。 它设计用于处理无界和有界数据流&#xff0c;在内存级速度下提供高效的有状态计算。 Flink 凭借其独特的Checkpoint机制和Exactly-Once语义&#xff0c;确保数据处理的准确性…

只用 CSS 能玩出什么花样?

在前端开发领域&#xff0c;CSS 不仅仅是一种样式语言&#xff0c;它更像是一位多才多艺的艺术家&#xff0c;能够创造出令人惊叹的视觉效果。本文将带你探索 CSS 的无限可能&#xff0c;从基本形状到动态动画&#xff0c;从几何艺术到仿生设计&#xff0c;只用 CSS 就能玩出令…

Vscode中Github copilot插件无法使用(出现感叹号)解决方案

1、击扩展或ctrl shift x ​​​​​​​ 2、搜索查询或翻找到Github compilot 3、点击插件并再左侧点击登录github 点击Sign up for a ... 4、跳转至github登录页&#xff0c;输入令牌完成登陆后返回VScode 5、插件可以正常使用