详细解析Kafaka Streams中各个DSL操作符的用法

什么是DSL?

在Kafka Streams中,DSL(Domain Specific Language)指的是一组专门用于处理Kafka中数据流的高级抽象和操作符。这些操作符以声明性的方式定义了数据流的转换、聚合、连接等处理逻辑,使得开发者可以更加专注于业务逻辑的实现,而不是底层的数据流处理细节。

Kafka Streams的DSL主要包括以下几个方面的操作符:

  1. 转换操作符(Transformation Operators):这些操作符用于对KStream或KTable中的数据进行转换,如mapflatMapfilter等。它们允许你对流中的每个元素应用一个函数,从而生成新的流或表。

  2. 聚合操作符(Aggregation Operators):聚合操作符通常与groupBy一起使用,用于将数据分组,并对每个组内的数据进行聚合操作,如countaggregatereduce等。这些操作符可以生成KTable,表示每个键的聚合结果。

  3. 连接和合并操作符(Join and Merge Operators):这些操作符允许你将两个或多个流或表进行连接或合并操作,如joinouterJoinmerge等。它们可以根据键将来自不同源的数据合并起来,以支持更复杂的业务逻辑。

  4. 窗口化操作符(Windowing Operators):窗口化操作符与聚合操作符结合使用,用于对时间窗口内的数据进行聚合。它们允许你定义时间窗口的大小,并在这个窗口内对数据进行聚合操作。Kafka Streams提供了多种类型的窗口,如滚动窗口(Tumbling Windows)、滑动窗口(Sliding Windows)和会话窗口(Session Windows)等。

  5. 状态存储操作符(State Store Operators):Kafka Streams中的状态存储操作符允许你在处理过程中保存状态,以便在需要时进行访问或更新。状态存储是Kafka Streams实现有状态操作(如聚合、连接等)的基础。Kafka Streams提供了多种类型的状态存储,如键值存储(KeyValue Stores)、窗口存储(Window Stores)等。

通过使用这些DSL操作符,开发者可以构建出复杂的数据处理管道,实现数据的实时分析、监控、转换等需求。同时,Kafka Streams还提供了灵活的配置选项和可扩展的架构,使得它能够满足不同规模和复杂度的数据处理需求。

实例演示

下面将通过一系列的代码示例来详细解析Kafka Streams中各个DSL操作符的用法。这些示例假设你已经创建了一个基本的Spring Boot项目,并且包含了Kafka Streams的依赖:

<!-- Maven依赖 -->
<dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId><version>2.7.1</version> 
</dependency>
<dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-streams</artifactId><version>2.7.1</version> 
</dependency>

1. stream()

  • 用途:从输入主题创建一个KStream
  • 示例KStream<String, String> stream = builder.stream("input-topic");

2. filter()

  • 用途:根据给定的条件过滤流中的记录。
  • 示例:过滤出值大于10的记录。
    KStream<String, Integer> filteredStream = stream.filter((key, value) -> value > 10);
    

3. map()

  • 用途:将流中的每个记录转换为一个新的记录。
  • 示例:将值转换为字符串的大写形式。
    KStream<String, String> upperCasedStream = stream.mapValues(value -> value.toUpperCase());
    

4. flatMap()

  • 用途:将流中的每个记录转换为零个、一个或多个新记录。
  • 示例:将每个字符串拆分为单词列表。
    KStream<String, String> flatMappedStream = stream.flatMapValues(value -> Arrays.asList(value.split("\\W+")));
    

5. peek()

  • 用途:对每个记录执行一个操作,但不改变流本身。
  • 示例:打印每个记录的值。
    stream.peek((key, value) -> System.out.println("Key: " + key + ", Value: " + value));
    

6. groupByKey()

  • 用途:根据键对流中的记录进行分组,生成一个KGroupedStream
  • 示例:按键分组。
    KGroupedStream<String, String> groupedStream = stream.groupByKey();
    

7. aggregate()

  • 用途:对分组流执行聚合操作。
  • 示例:计算每个键的值的总和。
    KTable<String, Integer> aggregatedTable = groupedStream.aggregate(() -> 0, // 初始值(aggKey, newValue, aggValue) -> aggValue + newValue, // 聚合逻辑Materialized.as("aggregated-store") // 状态存储配置
    );
    
    关于aggregate()的更详细用法,可以参考博主之前的一篇文章:浅析Kafka Streams中KTable.aggregate()方法的使用

8. join()

  • 用途:将当前流与另一个流或表基于键进行连接。
  • 示例:将当前流与另一个流连接。
    KStream<String, String> joinedStream = stream.join(anotherStream,(value1, value2) -> value1 + ", " + value2, // 合并逻辑JoinWindows.of(Duration.ofMinutes(5)) // 窗口配置
    );
    

9. through()

  • 用途:将流数据发送到中间主题,并继续流处理。
  • 示例:将流处理结果发送到中间主题,并继续处理。
    KStream<String, String> throughStream = stream.mapValues(value -> value.toUpperCase()).through("intermediate-topic");
    

10. to()

  • 用途:将流数据发送到输出主题。
  • 示例:将处理后的流发送到输出主题。
    stream.mapValues(value -> value.toUpperCase()).to("output-topic");
    

11. branch()

  • 用途:根据条件将流分成多个分支。
  • 示例:根据值的奇偶性将流分成两个分支。
    KStream<String, Integer>[] branches = stream.branch((key, value) -> value % 2 == 0,(key, value) -> value % 2 != 0
    );
    

12. merge()

  • 用途:将多个流合并为一个流。
  • 示例:合并两个流。
    KStream<String, String> mergedStream = stream1.merge(stream2);
    

13. windowedBy()

  • 用途:基于时间窗口对流进行分组。
  • 示例:按小时窗口分组。
    TimeWindowedKStream<String, String> windowedStream = stream.windowedBy(TimeWindows.of(Duration.ofHours(1)));
    

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/47314.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PF4J+SpringBoot

plugin-common pom.xml相关配置 <groupId>pub.qingyun</groupId> <artifactId>plugin-common</artifactId> <version>0.0.1-SNAPSHOT</version> <description>插件配置类</description><dependency><groupId>or…

TCP与UDP网络编程

网络通信协议 java.net 包中提供了两种常见的网络协议的支持: UDP&#xff1a;用户数据报协议(User Datagram Protocol)TCP&#xff1a;传输控制协议(Transmission Control Protocol) TCP协议与UDP协议 TCP协议 TCP协议进行通信的两个应用进程&#xff1a;客户端、服务端 …

好玩的调度技术-场景编辑器

好玩的调度技术-场景编辑器 文章目录 好玩的调度技术-场景编辑器前言一、演示一、代码总结好玩系列 前言 这两天写前端写上瘾了&#xff0c;顺手做了个好玩的东西&#xff0c;好玩系列也好久没更新&#xff0c;正好作为素材写一篇文章&#xff0c;我真的觉得蛮好玩的&#xff…

编程中的智慧之设计模式一

设计模式&#xff1a;编程中的智慧之道 设计模式是软件开发中的一种解决方案&#xff0c;提供了在特定上下文中解决常见问题的模板。这些模式帮助我们构建更加灵活、可维护和可扩展的系统。本文将探讨设计模式的不同类型及其在Java中的应用。 设计模式的层次 设计模式可以类…

【C#】Array和List

C#中的List<T>和数组&#xff08;T[]&#xff09;在某些方面是相似的&#xff0c;因为它们都是用来存储一系列元素的集合。然而&#xff0c;它们在功能和使用上有一些重要的区别&#xff1a; 数组&#xff08;Array&#xff09; 固定大小&#xff1a;数组的大小在声明时…

LinuxShell编程1———shell基础命令

文章目录 前言 一、shell基础知识 1、shell概念 2、Shell的功能 接收&#xff1a;用户命令 调用&#xff1a;相应的应用程序 解释并交给&#xff1a;内核去处理 返还&#xff1a;内核处理结果 3、Shell种类&#xff08;了解&#xff09; 3.1、MS-DOS 3.2、Windows的…

数据的守护者:深入解析 Elasticsearch 的副本机制

标题&#xff1a;数据的守护者&#xff1a;深入解析 Elasticsearch 的副本机制 在分布式搜索引擎 Elasticsearch 中&#xff0c;副本是确保数据高可用性和查询性能的关键特性。通过副本机制&#xff0c;Elasticsearch 能够在集群中复制数据&#xff0c;从而提高数据的可靠性和…

高并发服务器-使用多进程(Multi-Process)实现【C语言】

在上期的socket套接字的使用详解中&#xff08;socket套接字的使用详解&#xff09;最后实现的TCP服务器只能处理一个客户端的请求发送&#xff0c;当有其他客户端请求连接时会被阻塞。为了能同时处理多个客户端的连接请求&#xff0c;本期使用多进程的方式来解决。 解决方案步…

SDF学习笔记整理

1 SDF的用处 SDF文件是标准延时文件&#xff0c;该文件由于其扩展名为.sdf即filename.sdf故被常叫做SDF文件。该文件是综合吐出的文件&#xff0c;也可以来自于静态时序分析&#xff08;STA&#xff09;&#xff0c;前者称为pre_sdf文件&#xff0c;后者称为post_sdf。 两者主…

R语言进行K折交叉验证问题

在使用R语言进行模型参数评估优化时候&#xff0c;会使用K折交叉验证&#xff0c;其中会遇到各种各样问题&#xff1a; 错误: C5.0 models require a factor outcome > (1-mean(E0));(1-mean(E1)) [1] 1 [1] 1 报错说明C5.0模型需要因子变量输出&#xff0c;源代码如下&am…

无人机技术优势及发展详解

一、技术优势 无人机&#xff08;Unmanned Aerial Vehicle&#xff0c;UAV&#xff09;作为一种新兴的空中智能平台&#xff0c;凭借其独特的技术优势&#xff0c;已经在众多领域中展现出强大的应用潜力和实用价值。以下是无人机的主要技术优势&#xff1a; 1. 自主导航与远程…

Java 程序员面试笔记 - 数据库

12.1 SQL DML&#xff1a;插入数据、修改数据和删除数据。 DDL&#xff1a;数据定义语句&#xff0c;可以对数据库用户、基本表、视图等进行定义和撤销。 DCL&#xff1a;用于对数据库进行统一的控制管理。 12.2 内连接与外连接 内链接&#xff1a;两个表匹配的数据才出现…

【Harmony】SCU暑期实训鸿蒙开发学习日记Day2

目录 Git 参考文章 常用操作 ArkTS的网络编程 Http编程 发送请求 GET POST 处理响应 JSON数据解析 处理响应头 错误处理 Web组件 用生命周期钩子实现登录验证功能 思路 代码示例 解读 纯记录学习日记&#xff0c;杂乱&#xff0c;误点的师傅可以掉了&#x1…

How to integrate GPT-4 model hosted on Azure with the gptstudio package

题意&#xff1a;怎样将托管在Azure上的GPT-4模型与gptstudio包集成&#xff1f; 问题背景&#xff1a; I am looking to integrate the OpenAI GPT-4 model into my application. Here are the details I have: Endpoint: https://xxxxxxxxxxxxxxx.openai.azure.com/Locatio…

【前端】SpringBootWeb 篇-入门了解 Spring Cache、Spring Task与WebSocket 框架

在SpringBootWeb开发中&#xff0c;Spring Cache、Spring Task与WebSocket框架是三个非常重要的组件&#xff0c;它们分别用于缓存管理、任务调度和实时通信。以下是对这三个框架的入门了解&#xff1a; 一、Spring Cache 1. 简介 Spring Cache是Spring框架提供的缓存抽象&a…

LG 选择 Flutter 来增强其智能电视操作系统 webOS

可以这个话题会让大多数人困惑&#xff0c;2024 年了为什么还会冒出 webOS 这种老古董&#xff1f;然后 LG 为什么选择 webOS &#xff1f;现在为什么又选择 Flutter &#xff1f; 其实早在 Google I/O 发布 Flutter 3.22 版本的时候&#xff0c;就提到了 LG 选择 Flutter 来增…

tinymce富文本支持word内容同时粘贴文字图片上传 vue2

效果图 先放文件 文件自取tinymce: tinymce富文本简单配置及word内容粘贴图片上传 封装tinymce 文件自取&#xff1a;tinymce: tinymce富文本简单配置及word内容粘贴图片上传 页面引用组件 <TinymceSimplify refTinymceSimplify v-model"knowledgeBlockItem.content…

Socket、WebSocket 和 MQTT 的区别

Socket 协议 定义&#xff1a;操作系统提供的网络通信接口&#xff0c;抽象了TCP/IP协议&#xff0c;支持TCP和UDP。特点&#xff1a; 通用性&#xff1a;不限于Web应用&#xff0c;适用于各种网络通信。协议级别&#xff1a;直接使用TCP/UDP&#xff0c;需要手动管理连接和数…

vue3 项目的创建、组合式API、rective和ref、watch函数

vue3项目的创建&#xff1a; npm init vuelatest 在执行上述代码以后&#xff0c;按需勾选项目所需的东西就可以 然后再命令行依次执行&#xff1a; // 进入项目 cd vuedemo //安装下来对应的包 npm install //启动项目 npm run dev文件解读&#xff1a; package.json &am…

【leetcode】 字符串相乘(大数相乘、相加)

记录一下大数相乘相加方法&#xff1a; 给定两个以字符串形式表示的非负整数 num1 和 num2&#xff0c;返回 num1 和 num2 的乘积&#xff0c;它们的乘积也表示为字符串形式。 注意&#xff1a;不能使用任何内置的 BigInteger 库或直接将输入转换为整数。 示例 1: 输入: nu…