BernNet Learning Arbitrary Graph Spectral Filters via Bernstein Approximation

发表于:neurips21
推荐指数: #paper/⭐⭐
请添加图片描述

设定:在本文中,h是过滤器.

bernstein 多项式逼近(这个证明有点稀里糊涂的,反正我觉得一点点问题,可能因为我水平低)

p K ( t ) : = ∑ k = 0 K θ k ⋅ b k K ( t ) = ∑ k = 0 K f ( k K ) ⋅ ( K k ) ( 1 − t ) K − k t k . p_K(t):=\sum_{k=0}^K\theta_k\cdot b_k^K(t)=\sum_{k=0}^Kf\left(\frac kK\right)\cdot\binom Kk(1-t)^{K-k}t^k. pK(t):=k=0KθkbkK(t)=k=0Kf(Kk)(kK)(1t)Kktk.
(其实类似于二项分布.如上K,k即二项分布的前缀)
推论2.1:给定一个连续函数f(t) t ∈ [ 0 , 1 ] t \in[0,1] t[0,1],我们有:当 K → ∞ K\to\infty K时, p K ( t ) → f ( t ) p_{K}(t)\to f(t) pK(t)f(t).
后者容易理解,当K趋近于无穷时,将f后面的即为二项分布,求和为0.而 f ( k K ) f\left( \frac{k}{K} \right) f(Kk)又和t相关,用t取代(感觉理解的有问题)
对于过滤函数 h : [ 0 , 2 ] → [ 0 , 1 ] h:[0,2]\to[0,1] h:[0,2][0,1],我们有 t = λ 2 t=\frac{\lambda}{2} t=2λ,我们就有: f ( t ) = h ( 2 t ) f(t)=h(2t) f(t)=h(2t), θ k = f ( k / K ) = h ( 2 k / K ) \theta_k = f(k/K) = h(2k/K) θk=f(k/K)=h(2k/K). b k K ( t ) = b k K ( λ 2 ) = ( K k ) ( 1 − λ 2 ) K − k ( λ 2 ) k b_{k}^K(t)=b_k^K(\frac\lambda2) = \binom Kk(1-\frac\lambda2)^{K-k}(\frac\lambda2)^k bkK(t)=bkK(2λ)=(kK)(12λ)Kk(2λ)k.最终,我们可以得到如下近似: p K ( λ / 2 ) = ∑ k = 0 K θ k ( K k ) ( 1 − λ 2 ) K − k ( λ 2 ) k = ∑ k = 0 K θ k 1 2 K ( K k ) ( 2 − λ ) K − k λ k p_K(\lambda/2)~=~\sum_{k=0}^K\theta_k\binom Kk(1-\frac\lambda2)^{K-k}\left(\frac\lambda2\right)^k~=~\sum_{k=0}^K\theta_k\frac1{2^K}\binom Kk(2-\lambda)^{K-k}\lambda^k pK(λ/2) = k=0Kθk(kK)(12λ)Kk(2λ)k = k=0Kθk2K1(kK)(2λ)Kkλk.
z = U d i a g [ p K ( λ 1 / 2 ) , . . . , p K ( λ n / 2 ) ] U T ⏟ R e m N e t x = ∑ k = 0 K θ k 1 2 K ( K k ) ( 2 I − L ) K − k L k x \mathbf{z}=\underbrace{\mathbf{U}diag[p_K(\lambda_1/2),...,p_K(\lambda_n/2)]\mathbf{U}^T}_{\mathrm{RemNet}}\mathbf{x}=\sum_{k=0}^K\theta_k\frac1{2^K}\binom Kk(2\mathbf{I}-\mathbf{L})^{K-k}\mathbf{L}^k\mathbf{x} z=RemNet Udiag[pK(λ1/2),...,pK(λn/2)]UTx=k=0Kθk2K1(kK)(2IL)KkLkx

实现常见的过滤器通过BernNet

请添加图片描述

证明好麻烦啊,烦烦烦
附录:组合数性质
∙ C n k = C n n − k ∙ C n k + 1 = C n k × n − k k + 1 ∙ C n k = C n − 1 k − 1 × n k ∙ C n k = C n − 1 k − 1 + C n − 1 k \begin{aligned}&\bullet C_n^k = C_n^{n-k}\\&\bullet C_n^{k+1} = C_n^k \times \frac{n-k}{k+1}\\&\bullet C_n^k = C_{n-1}^{k-1} \times \frac{n}{k}\\&\bullet C_n^k = C_{n-1}^{k-1} + C_{n-1}^k\end{aligned} Cnk=CnnkCnk+1=Cnk×k+1nkCnk=Cn1k1×knCnk=Cn1k1+Cn1k
C n k = A n k A k k = n k ‾ k ! = n ! k ! ( n − k ) ! C_n^k=\frac{A_n^k}{A_k^k}=\frac{n^{\underline{k}}}{k!}=\frac{n!}{k!(n-k)!} Cnk=AkkAnk=k!nk=k!(nk)!n!

图过滤

min ⁡ z f ( z ) = ( 1 − α ) z T γ ( L ) z + α ∥ z − x ∥ 2 2 \min_\mathbf{z}f(\mathbf{z})=(1-\alpha)\mathbf{z}^T\gamma(\mathbf{L})\mathbf{z}+\alpha\|\mathbf{z}-\mathbf{x}\|_2^2 zminf(z)=(1α)zTγ(L)z+αzx22
令其倒数为0, α = 0.5 \alpha=0.5 α=0.5, γ ( L ) = e t L − I \gamma(\mathbf{L})=e^{t\mathbf{L}}-\mathbf{I} γ(L)=etLI. ∂ f ( z ) ∂ z = ( e t L − I ) z + z − x = 0 , \frac{\partial f(\mathbf{z})}{\partial\mathbf{z}}=\left(e^{t\mathbf{L}}-\mathbf{I}\right)\mathbf{z}+\mathbf{z}-\mathbf{x}=\mathbf{0}, zf(z)=(etLI)z+zx=0,
z ∗ = e − t L x = e − t ( I − P ) x = ∑ k = 0 ∞ e − t t k k ! P k x . \mathbf{z}^*=e^{-t\mathbf{L}}\mathbf{x}=e^{-t(\mathbf{I}-\mathbf{P})}\mathbf{x}=\sum_{k=0}^\infty e^{-t}\frac{t^k}{k!}\mathbf{P}^k\mathbf{x}. z=etLx=et(IP)x=k=0etk!tkPkx.
这就是基于图热核的GNN例如GDC和GraphHeat采用的核

过滤器的非负性(保证凸优化)

0 ≤ g ( λ ) = ∑ k = 0 K w k λ k ≤ 1 , ∀ λ ∈ [ 0 , 2 ] . 0\leq g(\lambda)=\sum_{k=0}^Kw_k\lambda^k\leq1, \forall \lambda\in[0,2]. 0g(λ)=k=0Kwkλk1,λ[0,2].证明:
α ( α I + ( 1 − α ) γ ( L ) ) − 1 x = U d i a g [ α α + ( 1 − α ) γ ( λ 1 ) , . . . , α α + ( 1 − α ) γ ( λ n ) ] U T x . \alpha\left(\alpha\mathbf{I}+(1-\alpha)\gamma(\mathbf{L})\right)^{-1}\mathbf{x}=\mathbf{U}diag\left[\frac\alpha{\alpha+(1-\alpha)\gamma(\lambda_1)},...,\frac\alpha{\alpha+(1-\alpha)\gamma(\lambda_n)}\right]\mathbf{U}^T\mathbf{x}. α(αI+(1α)γ(L))1x=Udiag[α+(1α)γ(λ1)α,...,α+(1α)γ(λn)α]UTx.
λ ∈ [ 0 , 2 ] , we have  0 ≤ h ( λ ) ≤ α α + ( 1 − α ) ⋅ 0 = 1 for  λ ∈ [ 0 , 2 ] . \lambda\in[0,2],\text{ we have }0\leq h(\lambda)\leq\frac\alpha{\alpha+(1-\alpha)\cdot0}=1\text{ for }\lambda\in[0,2]. λ[0,2], we have 0h(λ)α+(1α)0α=1 for λ[0,2].

结果:貌似挺高的,但是别人跑的就没那么高.

结构: Z = ∑ k = 0 K θ k 1 2 K ( K k ) ( 2 I − L ) K − k L k f ( X ) , \mathbf{Z}=\sum_{k=0}^K\theta_k\frac1{2^K}\binom Kk(2\mathbf{I}-\mathbf{L})^{K-k}\mathbf{L}^kf\left(\mathbf{X}\right), Z=k=0Kθk2K1(kK)(2IL)KkLkf(X),
其中:f(X)是二层的MLP

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/46590.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大数据hive表和iceberg表格式

iceberg: https://iceberg.apache.org/ iceberg表,是一种面向大型分析数据集的开放表格式,旨在提供可扩展、高效、安全的数据存储和查询解决方案。它支持多种存储后端上的数据操作,并提供 ACID 事务、多版本控制和模式演化等特性&#xff0c…

【常见开源库的二次开发】基于openssl的加密与解密——Base的编解码(二进制转ascll)(二)

目录: 目录: 一、 Base64概述和应用场景 1.1 概述 1.2 应用场景 二、Base16 2.1 Base16编码 2.2 Base16编解码 三、Base64 四、OpenSSL BIO接☐ 4.1 Filter BIOs: 4.2 Source/Sink BIOs: 4.3 应用场景: 4.4 具体使用&…

设计模式学习(二)工厂模式——抽象工厂模式

设计模式学习(二)工厂模式——抽象工厂模式 背景抽象工厂模式优点与缺点参考文章 背景 现在我需要开发一个相机操作模块,它可能在Windows下运行,也可能在Linux下运行。由于在厂家提供的SDK中,Windows下的SDK和Linux下…

【JVM】JVM实战笔记-随笔

JVM实战笔记-随笔 前言字节码如何查看字节码文件jclasslibJavapArthasArthurs监控面板Arthus查看字节码信息 内存调优内存溢出的常见场景解决内存溢出发现问题Top命令VisualVMArthas使用案例 Prometheus Grafana案例 堆内存情况对比内存泄漏的原因:代码中的内存泄漏并发请求问…

代谢组数据分析(十四):代谢物组间网络分析(spearman coefficient)

介绍 在代谢物网络分析领域,研究者采用斯皮尔曼系数来定量评估代谢物之间的相关性。该系数作为一种有效的非参数统计工具,能够揭示代谢物间潜在的关联模式,不受它们分布特性的限制。通过计算所有代谢物配对间的斯皮尔曼系数,研究者能够构建出反映代谢物相互关系的网络。 …

Git钩子Hook功能

💾 Hook 钩子 目录 🔔 简介🔔 常见类型🔔 如何配置🔔 使用场景🔔 示例 🔔 简介 Git Hooks是Git内置的一种机制,允许在特定事件发生时执行自定义脚本。Git Hook可以在客户端和服务器端…

PHP多功能投票微信小程序系统源码

🎉一键决策,尽在掌握!多功能投票小程序,让选择不再纠结🤔 📲【开篇:告别传统,拥抱便捷投票新时代】📲 还在为组织投票活动手忙脚乱?或是面对众多选项犹豫不…

Hadoop发展史和生态圈介绍

目录 一、Hdoop概述 二、Hadoop生态组件 三、大数据的技术生态体系 四、Hadoop发展历史 4.1 概述 4.2 Hadoop历史发展节点 4.2.1 2002-2004年理论阶段 4.2.2 2005-2008年Hadoop的问世与崛起 4.2.3 2009-2017年Hadoop助力大数据行业的发展 4.2.4 至今 五、Hadoop优势特…

华为HCIP Datacom H12-821 卷40

1.单选题 下面是台路由器BGP错误输出信息&#xff0c;关于这段信息描述错误的是 <HUAWEI>display bgp error Error Type :Peer Error Date/Time :2010-03-22 12:40:39 Peer Address :10.1.1.5 Error Info : Incorrect remote AS A、可能是由于邻居…

面向 AI 而生的香橙派 AIpro 开发板开箱实测

前几天搞到一块很牛掰的开发板&#xff0c;是香橙派联合华为精心打造的高性能 AI 开发板 – OrangePi AIpro 开发板。 其搭载了昇腾 AI 处理器&#xff0c;可提供 8TOPS INT8 的计算能力&#xff0c;作为单板硬件设备来说&#xff0c;算力杠杠的了&#xff0c;至于跑 AI 模型性…

django实现用户的注册、登录、注销功能

创建django项目的步骤&#xff1a;Django项目的创建步骤-CSDN博客 一、前置工作 配置数据库&#xff0c;设置数据库引擎为mysql 1、在settings文件中找到DATABASES, 配置以下内容 DATABASES {"default": {ENGINE: django.db.backends.mysql, # 数据库引擎NAME: dja…

打破平台限制,使智能手机和平板电脑上无缝运行Windows x86/x64架构的软件和游戏的一款安卓应用

大家好&#xff0c;今天给大家分享一款专为Android设备设计的模拟器应用Winlator。其核心功能是能够在基于ARM架构的智能手机和平板电脑上无缝运行Windows x86/x64架构的软件和游戏。 Winlator是一款Android应用程序&#xff0c;它允许用户使用Wine和Box86/Box64在Android设备上…

docker-compose部署redis-exporter

一、安装prometheus 1、安装 version: 3.1services:redis-exporter:image: bitnami/redis-exporter:latestcontainer_name: redis-exporterports:- 9121:9121environment:TZ: Asia/Shanghaicommand:- --redis.addrredis://127.0.0.1:6379# - --redis.passwordlabels:org.labe…

C#学习3-微软C#官方文档Microsoft-dotnet-csharp.pdf

文章目录 1.内插表达式的字段宽度和对齐方式 1.内插表达式的字段宽度和对齐方式 static void Main(string[] args) {var titles new Dictionary<string, string>() {["Doyle ,Arthur"] "Hound of the Basker,The",["Lodon ,Jack"] &quo…

PHP恋爱话术微信小程序系统源码

&#x1f496;恋爱高手的秘密武器&#xff01;恋爱话术微信小程序&#xff0c;让情话信手拈来✨ &#x1f4ad;【开场白&#xff1a;恋爱路上的甜蜜助手】&#x1f4ad; 还在为跟心仪的TA聊天时找不到话题而尴尬&#xff1f;或是担心自己说的每句话都显得那么“直男/女”&…

vi 编辑器快捷生成 main 函数和基本框架

step1: 执行 sudo vi /etc/vim/vimrc &#xff08;修改vimrc需要管理员权限&#xff1a;sudo&#xff09; step2:输入用户密码&#xff0c;回车, 编辑vimrc文件 step3:在尾行输入以下代码&#xff08;可复制&#xff09; map mf i#include<stdio.h><ESC>o#includ…

uniapp 微信小程序根据后端返回的文件链接打开并保存到手机文件夹中【支持doc、docx、txt、xlsx等类型的文件】

项目场景&#xff1a; 我们在使用uniapp官方提供的uni.downloadFile以及uni.saveFile时&#xff0c;会发现这个文件下载的默认保存位置和我们预想的不太一样&#xff0c;容易找不到&#xff0c;而且没有提示&#xff0c;那么我们就需要把文件打开自己保存并且有提示保存到哪个…

探索前沿科技:从迁移学习看人工智能的无限可能性

从迁移学习看人工智能的无限可能性 1 引言1.1 什么是迁移学习1.1.1 迁移学习的定义1.1.2 迁移学习的起源和背景 1.2 迁移学习的重要性1.2.1 解决小数据集问题1.2.2 提高模型训练效率1.2.3 应用于不同领域的广泛性 1.3 迁移学习的前景 2 迁移学习的基本概念2.1 源域和目标域2.1.…

【区块链 + 智慧政务】涉税行政事业性收费“e 链通”项目 | FISCO BCOS应用案例

国内很多城市目前划转至税务部门征收的非税收入项目已达 17 项&#xff0c;其征管方式为行政主管部门核定后交由税务 部门征收。涉税行政事业性收费受限于传统的管理模式&#xff0c;缴费人、业务主管部门、税务部门、财政部门四方处于 相对孤立的状态&#xff0c;信息的传递靠…

无人机之机架类型篇

碳纤维机架 具有低密度、高强度和高刚度的特点&#xff0c;非常适合商业或工业级无人机的设计。碳纤维机架在飞行过程中具有良好的减振效果&#xff0c;使飞行更加稳定&#xff0c;但制作工艺复杂&#xff0c;成本较高。 工程塑料机架 以其轻便、耐冲击和易加工等特点受到一…