【常见开源库的二次开发】基于openssl的加密与解密——Base的编解码(二进制转ascll)(二)

目录:

目录:

一、 Base64概述和应用场景

1.1 概述

1.2 应用场景

二、Base16

2.1 Base16编码

2.2 Base16编解码

三、Base64

四、OpenSSL BIO接☐

4.1 Filter BIOs:

4.2 Source/Sink BIOs:

4.3 应用场景: 

4.4 具体使用:

4.5 进行BIO编码:

4.6进行BIO解密:

1.Base64编码(Base64Encode函数)

2. Base64解码(Base64Decode`函数)

3. main函数


一、 Base64概述和应用场景

1.1 概述

Base64是一种编码方式,用于将二进制数据转换为ASCII字符串,以便在只支持文本的媒体上进行存储和传输。它不是一种加密算法,而是一种数据编码技术。Base64编码是一种简单而有效的数据编码方式,它允许二进制数据在文本环境中安全地传输和存储。尽管它不提供安全性(数据在传输过程中可以被读取),但它确保了数据的完整性和可移植性。

1.2 应用场景

邮件编码(base64)

xml或者json存储二进制内容

网页传递数据URL

数据库中以文本形式存放二进制数据

可打印的比特币钱包地址base58 Check(hash校验)

比特币地址bech32(base32)

二、Base16

2.1 Base16编码

Base16是一种编码方法,它使用16个可打印的ASCII字符来表示二进制数据。这些字符包括数字0到9和字母A到F。每个字符代表4个二进制位,因此Base16有时也称为十六进制编码。

在Base16编码过程中,首先将原始数据(如文本或文件)转换成二进制形式。对于ASCII编码字符,这一步直接涉及将每个字符转换为其对应的8位二进制值。对于UTF-8或其他编码,可能涉及更复杂的转换过程。 

接下来,将得到的二进制串按照每4位一组进行切分。由于每组4位可以对应一个0到15之间的十进制数,这个数可以直接映射到上述提到的16个字符之一。例如,二进制组0101对应十进制数5,按Base16编码转换成字符5;二进制组1001对应十进制数9,转换成字符9;二进制组1010对应十进制数10,转换成字符A,依此类推。

由于Base16使用4位二进制表示一个字符,一个字节(8位)被编码为两个Base16字符。因此,Base16编码后的数据大小是原始数据大小的两倍。

#include  <iostream>using  namespace  std;
//  定义一个静态的常量字符数组,用于Base16编码的字符映射表
static  const  char  BASE16_ENC_TAB[] = "123456789ABCDEF";//  函数:将输入的原始数据按照Base16编码规则编码到输出字符串中
//  参数:in  -  指向原始数据的指针;size  -  原始数据的字节数;out  -  指向输出编码字符串的指针
//  返回值:编码后的字符串长度,即原始数据长度的两倍
int  Base16Encode(const  unsigned  char* in, int  size, char* out)
{//  遍历原始数据的每个字节for (int i = 0; i < size; i++){//  将当前字节的高四位右移四位,得到高四位的值char  h = in[i] >> 4;  //  例如:二进制1000  0001通过移位变为0000  1000//  将当前字节的低四位与0x0F进行与操作,得到低四位的值char  l = in[i] & 0x0F;  //  例如:二进制0000  1111与0x0F与操作后得到0000  0001//  根据高四位的值,在编码表中查找对应的字符,并存入输出字符串out[i * 2] = BASE16_ENC_TAB[h];  //  映射高四位到编码表对应的字符//  根据低四位的值,在编码表中查找对应的字符,并存入输出字符串out[i * 2 + 1] = BASE16_ENC_TAB[l];  //  映射低四位到编码表对应的字符}//  返回编码后的字符串长度,即原始数据长度的两倍return  size * 2;
}int  main(int  argc, char* argv[])
{cout << "测试Base16编码" << endl;//  定义待编码的原始数据const  unsigned  char  data[] = "测试base16";//  获取原始数据的字节长度int  len = sizeof(data) - 1;  //  减1是因为sizeof包含了结尾的'\0'字符//  定义足够大的输出数组来存放编码后的字符串char  out1[1024] = { 0 };//  打印原始数据cout << "原始数据:  " << data << endl;//  调用Base16编码函数int  re = Base16Encode(data, len, out1);//  打印编码后的字符串及其长度cout << "编码后长度:  " << re << ",  编码结果:  " << out1 << endl;return  0;
}

(1) 定义了一个静态常量字符数组`BASE16_ENC_TAB`,包含了Base16编码所需的字符('0'-'9'和'A'-'F')。

(2)Base16Encode`函数接收三个参数:指向原始数据的指针`in`,原始数据的字节数`size`,以及指向输出编码字符串的指针`out`。

(3) 在`Base16Encode`函数中,使用一个循环遍历输入数据的每个字节。对于每个字节,进行以下操作:

        将字节的高四位右移四位,得到一个0到15之间的值,这个值对应于该字节的高四位。

        将字节与0x0F进行位与操作,得到一个0到15之间的值,这个值对应于该字节的低四位。

        使用这两个值作为索引,在`BASE16_ENC_TAB`数组中查找对应的字符,并将这些字符分别存储到输出字符串的相应位置。

(4)循环结束后,返回编码后的字符串长度,即原始数据长度的两倍。

(5)在`main`函数中,定义了一个待编码的字符串`data`,计算其长度(不包括结尾的空字符'\0'),并声明了一个足够大的字符数组`out1`来存储编码后的字符串。

(6)`main`函数打印出原始数据,调用`Base16Encode`函数进行编码,并打印出编码后的字符串及其长度。

代码定义了一个Base16Encode函数,用于将输入的原始数据按照Base16编码规则编码到输出字符串中,并在main函数中进行了测试。sizeof(data)包含了字符串结尾的空字符\0,所以在计算长度时应该减去1,否则会将空字符也进行编码。 

2.2 Base16编解码

Base16(或称为十六进制)编码是一种将二进制数据转换为一种使用16个可打印字符(0-9和A-F)表示的方法。Base16编码的解码过程是将编码后的字符串转换回原始的二进制数。

实现了Base16编码和解码的功能。

#include  <iostream>
//  引入iostream库,用于输入输出操作using  namespace  std;
//  使用std命名空间,避免在代码中重复写std::前缀//  定义一个静态的常量字符数组,用于Base16编码的字符映射表
static  const  char  BASE16_ENC_TAB[] = "0123456789ABCDEF";    //  包含16进制编码的字符,从0到Fstatic  const  char  BASE16_DEC_TAB[128] = {-1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,    //  ASCII码0-15,非16进制字符映射为-1-1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,    //  ASCII码16-31,非16进制字符映射为-1-1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,    //  ASCII码32-47,非16进制字符映射为-10,    1,    2,    3,    4,    5,    6,    7,    8,    9,  -1,  -1,  -1,  -1,  -1,  -1,    //  ASCII码48-57,对应0-9-1,  10,  11,  12,  13,  14,  15,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,    //  ASCII码65-70,对应A-F-1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,    //  ASCII码71-76,非16进制字符映射为-1-1,  10,  11,  12,  13,  14,  15,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,    //  ASCII码91-96,对应a-f-1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1,  -1     //  ASCII码97-102,非16进制字符映射为-1
};    //  正确填充解码表,非16进制字符映射为-1//  函数:将输入的原始数据按照Base16编码规则编码到输出字符串中
int  Base16Encode(const  unsigned  char* in, int  size, char* out) {for (int i = 0; i < size; i++) {char  h = in[i] >> 4;            //  获取字节的高4位char  l = in[i] & 0x0F;          //  获取字节的低4位out[i * 2] = BASE16_ENC_TAB[h];    //  将高4位转换为对应的16进制字符out[i * 2 + 1] = BASE16_ENC_TAB[l];    //  将低4位转换为对应的16进制字符}return  size * 2;    //  返回编码后的长度,是输入长度的两倍
}//  函数:将Base16编码的字符串解码回原始数据
int  Base16Decode(const  string& in, char* out) {for (int i = 0; i < in.size(); i += 2) {    //  以2个字符为一组进行解码unsigned  char  h = BASE16_DEC_TAB[static_cast<unsigned  char>(in[i])];    //  获取高4位unsigned  char  l = BASE16_DEC_TAB[static_cast<unsigned  char>(in[i + 1])];    //  获取低4位out[i / 2] = (h << 4) | l;    //  将高4位和低4位合并成原始字节}return  in.size() / 2;    //  返回解码后的长度,与输入长度相同
}int main(int argc, char* argv[]) {cout << "测试Base16编码" << endl;const unsigned char data[] = "测试base16编码";int len = sizeof(data) - 1;char out1[1024] = { 0 };unsigned char out2[1024] = { 0 };cout << "原始数据: " << data << endl;int encodedLength = Base16Encode(data, len, out1);cout << "编码后长度: " << encodedLength << ", 编码结果: " << out1 << endl;int decodedLength = Base16Decode(out1, reinterpret_cast<char*>(out2));cout << "解码后长度: " << decodedLength << ", 解码结果: " << out2 << endl;return 0;
}

1. 字符映射表:

        BASE16_ENC_TAB 是一个包含16进制编码字符的静态常量字符数组,从'0'到'F'

        BASE16_DEC_TAB  是一个静态常量字符数组,用于将ASCII码转换为对应的16进制数值。数组中索引0-15对应ASCII码0-9和A-F,其他索引为-1,表示不是16进制字符。

2. Base16Encode函数:

        接受三个参数:输入数据的指针in,输入数据的大小size,输出字符串的指针out。

        循环遍历输入数据的每个字节,提取高4位和低4位。

        使用高4位和低4位索引`BASE16_ENC_TAB`数组,获取对应的16进制字符。

        将两个字符依次写入输出字符串的相应位置。

        函数返回编码后的长度,即输入长度的两倍。

3.  Base16Decode函数:

        接受两个参数:Base16编码的字符串`in`和输出数据的指针out。

        以两个字符为一组进行解码,因为Base16编码是将每个字节转换为两个字符。

        使用输入字符串的每个字符索引BASE16_DEC_TAB数组,获取对应的16进制数值。

        将高4位和低4位合并成一个字节,写入输出数据。

        函数返回解码后的长度,即输入长度的一半。

4.  main函数:

        定义测试数据data,它是要编码和解码的字符串。

        定义输出缓冲区out1用于存储编码后的字符串,以及`out2`用于存储解码后的数据。

        打印原始数据。

        调用Base16Encode函数编码数据,并打印编码后的长度和结果。

        调用Base16Decode函数解码数据,并打印解码后的长度和结果。

通过定义字符映射表和实现编码和解码函数,实现了对字符串进行Base16编码和解码的功能。在`main`函数中,通过示例数据展示了如何使用这些函数。 

三、Base64

1.  分组处理:Base64编码将每3个字节的二进制数据(24位)作为一组进行处理。

2.  转换:将这3个字节的24位分成4组,每组6位。每组的6位二进制数转换成对应的4位Base64字符。

3.  补齐:如果原始数据不是3的倍数,那么在最后可能会剩下1个或2个字节。为了将这些数据也能编码,Base64会在编码后的字符串末尾添加'='字符。如果剩余1个字节,就会添加一个'=';如果剩余2个字节,就会添加两个'='。

四、OpenSSL BIO接☐

penSSL BIO(Basic I/O)是OpenSSL库中用于抽象I/O操作的一个组件。BIO提供了多种接口来控制不同类型的I/O操作

4.1 Filter BIOs

这些BIOs用于在数据从一个BIO流向另一个BIO的过程中进行转换或过滤。

  • BIO_f_base64():用于Base64编码和解码。
  • BIO_f_cipher():用于加密和解密。
  • BIO_f_md5():用于MD5散列。
  • BIO_f_md4():用于MD4散列。
  • BIO_f_sha1():用于SHA-1散列。
  • BIO_f_sm3():用于SM3散列。
  • BIO_f_sign():用于签名。
  • BIO_f_verify():用于验证签名。
  • BIO_f_negotiate():用于TLS/SSL协商。
  • BIO_f_buffer():用于缓冲。

4.2 Source/Sink BIOs

这些BIOs是数据源或接收器

    • BIO_new(BIO_s_mem()):创建一个内存BIO,用于存储数据。
    • BIO_new(BIO_s_file()):创建一个文件BIO,用于文件读写。
    • BIO_new(BIO_s_socket()):创建一个套接字BIO,用于网络通信。
    • BIO_new(BIO_s_fd()):创建一个文件描述符BIO。
    • BIO_new(BIO_s_open()):创建一个用于打开文件的BIO。
    • BIO_new(BIO_s_mem()):创建一个内存BIO。
    • BIO_new(BIO_s_connect()):创建一个用于连接的BIO。
    • BIO_new(BIO_s_accept()):创建一个用于接受连接的BIO。

4.3 应用场景: 

  • BIOs常用于构建复杂的I/O操作,如加密通信、数据转换等。
  • 在TLS/SSL通信中,BIOs用于封装底层的I/O操作,如读写数据。

4.4 具体使用:

  • BIO_new()用于创建一个新的BIO对象。
  • 数据源BIO,例如BIO_new(BIO_s_mem())创建一个内存BIO。
  • 过滤BIO,例如BIO_new(BIO_f_base64())创建一个Base64编码和解码的过滤BIO。
  • 创建BIO链,例如BIO_push(b64_bio, mem_bio)将Base64过滤BIO和内存BIO连接起来。
  • BIO_write():用于向BIO写入数据。当使用Base64过滤BIO时,数据会被编码。
  • BIO_read_ex():用于从BIO读取数据。当使用Base64过滤BIO时,数据会被解码。

4.5 进行BIO编码:

通过使用OpenSSL的BIO链表和Base64编码过滤器,将输入数据编码为Base64格式,并将结果输出到控制台。主要思路是利用OpenSSL库提供的功能,通过BIO链表处理编码过程,最后将编码后的数据存储并输出。

#include  <iostream>
#include  <openssl/rand.h>
#include  <openssl/evp.h>
#include  <openssl/buffer.h>
#include  <cstring> using  namespace  std;int  Base64Encode(const  unsigned  char*  in,  int  len,  char*  out_base64)
{if  (!in  ||  len  <=  0  ||  !out_base64)return  0;//  内存源auto  mem_bio  =  BIO_new(BIO_s_mem());if  (!mem_bio)  return  0;//  base64  filterauto  b64_bio  =  BIO_new(BIO_f_base64());if  (!b64_bio){BIO_free(mem_bio);return  0;}//  形成BIO链表//  b64-memBIO_push(b64_bio,  mem_bio);//  写入到base64  filter  进行编码,结果会传递到链表的下一个节点//  到mem中读取结果(从链表头部,代表了整个链表)int  re  =  BIO_write(b64_bio,  in,  len);if  (re  <  0){//  清空整个链表节点BIO_free_all(b64_bio);return  0;}//  刷新缓存,写入链表的memBIO_flush(b64_bio);int  outsize  =  0;//  从链表源内存读取BUF_MEM*  p_data  =  NULL;BIO_get_mem_ptr(b64_bio,  &p_data);if  (p_data){//  确保输出数组足够大if  (p_data->length  <  len  *  4  /  3  +  1){BIO_free_all(b64_bio);return  0;}memcpy(out_base64,  p_data->data,  p_data->length);outsize  =  p_data->length;}BIO_free_all(b64_bio);return  outsize;
}int  main(int  argc,  char  *argv[])
{cout  <<  "The  openssl  BIO  base64!"  <<  endl;unsigned  char  data[]  =  "测试Base64数据";int  len  =  sizeof(data);char  out[len  *  4  /  3  +  1];  //  基于最大编码长度分配内存int  encoded_len  =  Base64Encode(data,  len,  out);if  (encoded_len  >  0){out[encoded_len]  =  '\0';  //  确保字符串以null终止cout  <<  out  <<  endl;}getchar();return  0;
}

1. 包含必要的头文件:

        <iostream>:用于输入输出流。

        <openssl/evp.h>:用于加密和编码操作。

        <openssl/buffer.h>:用于缓冲区操作。

        <cstring>:用于字符串操作。

2.  命名空间声明:

        使用`using  namespace  std;`使得`std`命名空间下的元素可以直接使用,无需前缀。

3.  定义Base64编码函数`Base64Encode:

        函数接收三个参数:输入数据指针`in`,输入数据长度`len`,输出Base64编码数据指针out_base64。

        进行参数有效性检查,如果输入无效,则返回0。

        创建一个`BIO`(BASIC  I/O)对象`mem_bio`,用于内存操作。

        创建一个`BIO`对象`b64_bio`,用于Base64编码。

        将`b64_bio`连接到`mem_bio`后面,形成BIO链表,以便将编码后的数据写入内存。

        使用`BIO_write`将输入数据写入到`b64_bio`。

        使用`BIO_flush`将缓存中的数据写入到内存中。

        获取编码后的数据长度,并确保输出数组足够大。

        将编码后的数据复制到输出数组中。

        释放BIO资源,并返回编码后的数据长度。

4.  主函数main:

        打印一个信息字符串。

        定义一个要编码的字符数组`data`。

        调用`Base64Encode`函数进行编码。

        如果编码成功,将编码后的数据输出到控制台。

        等待用户按键,然后退出程序。


4.6进行BIO解密:

使用了OpenSSL库中的BIO(块I/O)抽象,它提供了一种灵活的方式来处理不同类型的I/O操作,包括加密和编码操作。通过将Base64编码和解码功能封装在BIO链表中。

#include  <iostream>
#include  <openssl/rand.h>
#include  <openssl/evp.h>
#include  <openssl/buffer.h>
#include  <cstring>using  namespace  std;int  Base64Encode(const  unsigned  char* in, int  len, char* out_base64)
{if (!in || len <= 0 || !out_base64)return  0;//  内存源auto  mem_bio = BIO_new(BIO_s_mem());if (!mem_bio) return  0;//  base64  filterauto  b64_bio = BIO_new(BIO_f_base64());if (!b64_bio){BIO_free(mem_bio);return  0;}//  形成BIO链表//  b64-memBIO_push(b64_bio, mem_bio);//  写入到base64  filter  进行编码,结果会传递到链表的下一个节点//  到mem中读取结果(从链表头部,代表了整个链表)//write为编码  3字节-》4字节,不足3字节补充0和=int  re = BIO_write(b64_bio, in, len);if (re < 0){//  清空整个链表节点BIO_free_all(b64_bio);return  0;}//  刷新缓存,写入链表的memBIO_flush(b64_bio);int  outsize = 0;//  从链表源内存读取BUF_MEM* p_data = NULL;BIO_get_mem_ptr(b64_bio, &p_data);if (p_data){//  确保输出数组足够大if (p_data->length < len * 4 / 3 + 1){BIO_free_all(b64_bio);return  0;}memcpy(out_base64, p_data->data, p_data->length);outsize = p_data->length;}BIO_free_all(b64_bio);return  outsize;
}int  Base64Decode(const  char*  in,  int  len,  unsigned  char*  out_data)
{if  (!in  ||  len  <=  0  ||  !out_data)return  0;//  内存源:密文BIO*  mem_bio  =  BIO_new_mem_buf(in,  len);if  (!mem_bio)return  0;//  base64过滤器BIO*  b64_bio  =  BIO_new(BIO_f_base64());if  (!b64_bio){BIO_free(mem_bio);return  0;}//  形成BIO链BIO_push(b64_bio,  mem_bio);//  读取  解码//  read为解码  4字节  ->  3字节size_t  size  =  0;BIO_read_ex(b64_bio,  out_data,  len,  &size);BIO_free_all(b64_bio);//  将解码后的字节转换为字符串string  decoded_string((char*)out_data,  size);//  打印解码后的字符串,以便于检查cout  <<  "Decoded  data:  "  <<  decoded_string  <<  endl;return  size;
}int  main(int  argc,  char*  argv[])  {cout  <<  "The    openssl    BIO    base64!"  <<  endl;unsigned  char  data[]  =  "测试Base数据的结果";int  len  =  sizeof(data);char  out[len  *  4  /  3  +  1];      //  基于最大编码长度分配内存unsigned  char  out2[len  *  4  /  3  +  1];      //  声明变量out2int  encoded_len;cout << "source:  " << data << endl << endl;encoded_len  =  Base64Encode(data,  len,  out);cout << "encode:  ";if  (encoded_len  >  0)  {out[encoded_len]  =  '\0';      //  确保字符串以null终止cout  <<  out  <<  endl;}encoded_len  =  Base64Decode(out,  encoded_len,  out2);      //  使用编码后的长度cout  << endl << "Decoded  data:   ";cout  <<  (const  char*)out2  <<  endl;getchar();return  0;
}

实现了两个主要功能:Base64编码和Base64解码。

1.Base64编码(Base64Encode函数)

(1).  输入验证:首先检查输入参数是否有效,包括输入数据指针、长度和输出缓冲区指针。

(2).  BIO链表初始化:

        创建一个内存BIO(`BIO_s_mem`),用于临时存储编码数据。

        创建一个Base64过滤器BIO(`BIO_f_base64`),用于执行Base64编码。

(3).  形成BIO链表:将Base64过滤器BIO插入到内存BIO的前面,形成链表。

(4).  写入数据:使用`BIO_write`函数将输入数据写入Base64过滤器BIO。

(5).  刷新缓存:使用`BIO_flush`函数刷新缓存,确保所有数据都被编码。

(6).  读取编码数据:

        使用`BIO_get_mem_ptr`函数获取内存BIO中的数据。

        检查输出缓冲区是否足够大以存储编码数据。

        使用`memcpy`将编码数据复制到输出缓冲区。

(7).  清理:释放所有BIO资源。

2. Base64解码(Base64Decode`函数)

(1).  输入验证:同样检查输入参数是否有效。

(2).  BIO链表初始化:

        创建一个内存BIO,用于存储输入的Base64编码数据。

        创建一个Base64过滤器BIO,用于执行Base64解码。

(3).  形成BIO链表:将Base64过滤器BIO插入到内存BIO的前面。

(4).  读取和解码数据:

        使用`BIO_read_ex`函数从Base64过滤器BIO中读取和解码数据。

        输出解码后的数据到用户提供的缓冲区。

(5).  清理:释放所有BIO资源。

3. main函数

(1).  打印欢迎信息。

(2).  编码数据:

        调用`Base64Encode`函数进行编码。

        输出编码后的Base64字符串。

(3).  解码数据:

        调用`Base64Decode`函数进行解码。

        输出解码后的原始数据。

(4).  等待用户输入,以便用户可以看到输出并手动关闭程序。
 

到此我们就算对Base64的编解码都实现其功能

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/46587.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

设计模式学习(二)工厂模式——抽象工厂模式

设计模式学习&#xff08;二&#xff09;工厂模式——抽象工厂模式 背景抽象工厂模式优点与缺点参考文章 背景 现在我需要开发一个相机操作模块&#xff0c;它可能在Windows下运行&#xff0c;也可能在Linux下运行。由于在厂家提供的SDK中&#xff0c;Windows下的SDK和Linux下…

【JVM】JVM实战笔记-随笔

JVM实战笔记-随笔 前言字节码如何查看字节码文件jclasslibJavapArthasArthurs监控面板Arthus查看字节码信息 内存调优内存溢出的常见场景解决内存溢出发现问题Top命令VisualVMArthas使用案例 Prometheus Grafana案例 堆内存情况对比内存泄漏的原因:代码中的内存泄漏并发请求问…

代谢组数据分析(十四):代谢物组间网络分析(spearman coefficient)

介绍 在代谢物网络分析领域,研究者采用斯皮尔曼系数来定量评估代谢物之间的相关性。该系数作为一种有效的非参数统计工具,能够揭示代谢物间潜在的关联模式,不受它们分布特性的限制。通过计算所有代谢物配对间的斯皮尔曼系数,研究者能够构建出反映代谢物相互关系的网络。 …

Git钩子Hook功能

&#x1f4be; Hook 钩子 目录 &#x1f514; 简介&#x1f514; 常见类型&#x1f514; 如何配置&#x1f514; 使用场景&#x1f514; 示例 &#x1f514; 简介 Git Hooks是Git内置的一种机制&#xff0c;允许在特定事件发生时执行自定义脚本。Git Hook可以在客户端和服务器端…

PHP多功能投票微信小程序系统源码

&#x1f389;一键决策&#xff0c;尽在掌握&#xff01;多功能投票小程序&#xff0c;让选择不再纠结&#x1f914; &#x1f4f2;【开篇&#xff1a;告别传统&#xff0c;拥抱便捷投票新时代】&#x1f4f2; 还在为组织投票活动手忙脚乱&#xff1f;或是面对众多选项犹豫不…

Hadoop发展史和生态圈介绍

目录 一、Hdoop概述 二、Hadoop生态组件 三、大数据的技术生态体系 四、Hadoop发展历史 4.1 概述 4.2 Hadoop历史发展节点 4.2.1 2002-2004年理论阶段 4.2.2 2005-2008年Hadoop的问世与崛起 4.2.3 2009-2017年Hadoop助力大数据行业的发展 4.2.4 至今 五、Hadoop优势特…

华为HCIP Datacom H12-821 卷40

1.单选题 下面是台路由器BGP错误输出信息&#xff0c;关于这段信息描述错误的是 <HUAWEI>display bgp error Error Type :Peer Error Date/Time :2010-03-22 12:40:39 Peer Address :10.1.1.5 Error Info : Incorrect remote AS A、可能是由于邻居…

面向 AI 而生的香橙派 AIpro 开发板开箱实测

前几天搞到一块很牛掰的开发板&#xff0c;是香橙派联合华为精心打造的高性能 AI 开发板 – OrangePi AIpro 开发板。 其搭载了昇腾 AI 处理器&#xff0c;可提供 8TOPS INT8 的计算能力&#xff0c;作为单板硬件设备来说&#xff0c;算力杠杠的了&#xff0c;至于跑 AI 模型性…

django实现用户的注册、登录、注销功能

创建django项目的步骤&#xff1a;Django项目的创建步骤-CSDN博客 一、前置工作 配置数据库&#xff0c;设置数据库引擎为mysql 1、在settings文件中找到DATABASES, 配置以下内容 DATABASES {"default": {ENGINE: django.db.backends.mysql, # 数据库引擎NAME: dja…

打破平台限制,使智能手机和平板电脑上无缝运行Windows x86/x64架构的软件和游戏的一款安卓应用

大家好&#xff0c;今天给大家分享一款专为Android设备设计的模拟器应用Winlator。其核心功能是能够在基于ARM架构的智能手机和平板电脑上无缝运行Windows x86/x64架构的软件和游戏。 Winlator是一款Android应用程序&#xff0c;它允许用户使用Wine和Box86/Box64在Android设备上…

docker-compose部署redis-exporter

一、安装prometheus 1、安装 version: 3.1services:redis-exporter:image: bitnami/redis-exporter:latestcontainer_name: redis-exporterports:- 9121:9121environment:TZ: Asia/Shanghaicommand:- --redis.addrredis://127.0.0.1:6379# - --redis.passwordlabels:org.labe…

C#学习3-微软C#官方文档Microsoft-dotnet-csharp.pdf

文章目录 1.内插表达式的字段宽度和对齐方式 1.内插表达式的字段宽度和对齐方式 static void Main(string[] args) {var titles new Dictionary<string, string>() {["Doyle ,Arthur"] "Hound of the Basker,The",["Lodon ,Jack"] &quo…

PHP恋爱话术微信小程序系统源码

&#x1f496;恋爱高手的秘密武器&#xff01;恋爱话术微信小程序&#xff0c;让情话信手拈来✨ &#x1f4ad;【开场白&#xff1a;恋爱路上的甜蜜助手】&#x1f4ad; 还在为跟心仪的TA聊天时找不到话题而尴尬&#xff1f;或是担心自己说的每句话都显得那么“直男/女”&…

vi 编辑器快捷生成 main 函数和基本框架

step1: 执行 sudo vi /etc/vim/vimrc &#xff08;修改vimrc需要管理员权限&#xff1a;sudo&#xff09; step2:输入用户密码&#xff0c;回车, 编辑vimrc文件 step3:在尾行输入以下代码&#xff08;可复制&#xff09; map mf i#include<stdio.h><ESC>o#includ…

uniapp 微信小程序根据后端返回的文件链接打开并保存到手机文件夹中【支持doc、docx、txt、xlsx等类型的文件】

项目场景&#xff1a; 我们在使用uniapp官方提供的uni.downloadFile以及uni.saveFile时&#xff0c;会发现这个文件下载的默认保存位置和我们预想的不太一样&#xff0c;容易找不到&#xff0c;而且没有提示&#xff0c;那么我们就需要把文件打开自己保存并且有提示保存到哪个…

探索前沿科技:从迁移学习看人工智能的无限可能性

从迁移学习看人工智能的无限可能性 1 引言1.1 什么是迁移学习1.1.1 迁移学习的定义1.1.2 迁移学习的起源和背景 1.2 迁移学习的重要性1.2.1 解决小数据集问题1.2.2 提高模型训练效率1.2.3 应用于不同领域的广泛性 1.3 迁移学习的前景 2 迁移学习的基本概念2.1 源域和目标域2.1.…

【区块链 + 智慧政务】涉税行政事业性收费“e 链通”项目 | FISCO BCOS应用案例

国内很多城市目前划转至税务部门征收的非税收入项目已达 17 项&#xff0c;其征管方式为行政主管部门核定后交由税务 部门征收。涉税行政事业性收费受限于传统的管理模式&#xff0c;缴费人、业务主管部门、税务部门、财政部门四方处于 相对孤立的状态&#xff0c;信息的传递靠…

无人机之机架类型篇

碳纤维机架 具有低密度、高强度和高刚度的特点&#xff0c;非常适合商业或工业级无人机的设计。碳纤维机架在飞行过程中具有良好的减振效果&#xff0c;使飞行更加稳定&#xff0c;但制作工艺复杂&#xff0c;成本较高。 工程塑料机架 以其轻便、耐冲击和易加工等特点受到一…

【C语言】深入解析选择排序

文章目录 什么是选择排序&#xff1f;选择排序的基本实现代码解释选择排序的优化选择排序的性能分析选择排序的实际应用结论 在C语言编程中&#xff0c;选择排序是一种简单且直观的排序算法。尽管它在处理大型数据集时效率不高&#xff0c;但由于其实现简单&#xff0c;常常用于…

牛客TOP101:反转链表

文章目录 1. 题目描述2. 解题思路3. 代码实现 1. 题目描述 2. 解题思路 简单粗暴的写法&#xff0c;就是从头到尾挨个将所有结点的指向翻转即可。需要注意的是&#xff0c;翻转之后会失去原有指向的结点&#xff0c;所以需要提前保存。   具体做法就是&#xff0c;使用cur标记…