【初中数学选讲】绝对值的几何意义例题(20240503-01)

1. 练习题目

1.1 题目描述

有2个不相等的实数 a a a b b b b > a b>a b>a
问:当 x x x取何值,或 x x x满足什么条件时, ∣ x − a ∣ + ∣ x − b ∣ \left|x-a\right|+\left|x-b\right| xa+xb最小。证明你的结论。
本题是面向初一下学期的学生出的一道思考题,题目难度为基础级

1.2 分析

这道题非常简单,只要掌握了以下两个思路,不难得出结论并给出证明:

  • 绝对值的几何意义
    在数轴上,对任意一点 a a a,其绝对值 ∣ a ∣ \left|a\right| a等于点到数轴原点 O O O之间的距离。
    在这里插入图片描述
    对于数轴上两点 a a a x x x ∣ x − a ∣ \left|x-a\right| xa等于点 a a a和点 x x x之间的距离。
    在这里插入图片描述

  • 分段讨论:涉及到绝对值的题目,经常需要按照不同的取值区间分段讨论。这是最基本的分析方法之一。

2 答题

2.1 定义

a a a b b b x x x三点表示在实数轴上,令 x x x a a a之间的距离为 m m m x x x b b b之间的距离为 n n n a a a b b b之间的距离为 k k k。即:
∣ x − a ∣ = m ∣ x − b ∣ = n ∣ b − a ∣ = b − a = k \begin{aligned} \left|x-a\right|&=m\\ \left|x-b\right|&=n\\ \left|b-a\right|&=b-a=k \end{aligned} xaxbba=m=n=ba=k

2.2 分段讨论

x x x点可能存在 3 3 3种情况,分别是:

  • x x x点在 a a a点左侧;
  • x x x点在 a a a点和 b b b点之间;
  • x x x点在 b b b点右侧。

下面分别针对这 3 3 3种情况进行讨论。

2.2.1 情况1: x x x点在 a a a点左侧( x < a , m = ∣ x − a ∣ x<a,\ \ m=\left|x-a\right| x<a,  m=xa m > 0 m>0 m>0

如图2-1所示,当 x x x点在 a a a点左侧时, n = m + k n=m+k n=m+k
在这里插入图片描述
则有
∣ x − a ∣ + ∣ x − b ∣ = m + n = m + ( m + k ) = 2 m + k \left|x-a\right|+\left|x-b\right|=m+n=m+(m+k)=2m+k xa+xb=m+n=m+(m+k)=2m+k

2.2.2 情况2: x x x点在 a a a点和 b b b点之间,含 x x x点与 a a a点或 b b b点重合的情况( x ≥ a x\geq a xa x ≤ b x\le b xb

如图2-2所示,当 x x x点在 a a a点和 b b b点之间时, k = m + n = b − a k=m+n=b-a k=m+n=ba
在这里插入图片描述
则有
∣ x − a ∣ + ∣ x − b ∣ = m + n = k \left|x-a\right|+\left|x-b\right|=m+n=k xa+xb=m+n=k

2.2.3 情况3: x x x点在 b b b点右侧( x > b , n = ∣ x − b ∣ x>b,\ \ n=\left|x-b\right| x>b,  n=xb n > 0 n>0 n>0

如图2-3所示,当 x x x点在b$点右侧时, m = n + k m=n+k m=n+k
在这里插入图片描述
则有
∣ x − a ∣ + ∣ x − b ∣ = m + n = ( n + k ) + n = 2 n + k \left|x-a\right|+\left|x-b\right|=m+n=(n+k)+n=2n+k xa+xb=m+n=(n+k)+n=2n+k

2.3 结论

综上所述,有:
在这里插入图片描述

由于 m > 0 m>0 m>0 n > 0 n>0 n>0,所以:当且仅当 x ≥ a x\geq a xa x ≤ b x≤b xb 时, ∣ x − a ∣ + ∣ x − b ∣ \left|x-a\right|+\left|x-b\right| xa+xb取得最小值 k k k(即 b − a b-a ba)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/42525.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

六、数据可视化—首页、列表页制作(爬虫及数据可视化)

六、数据可视化—首页、列表页制作&#xff08;爬虫及数据可视化&#xff09; 1&#xff0c;首页制作&#xff08;1&#xff09;创建新项目选择flask框架&#xff08;2&#xff09;下载模板&#xff08;3&#xff09;导入flask框架中进行改写&#xff08;4&#xff09;访问服务…

回溯算法-以景点门票销售管理系统为例

1.回溯算法介绍 1.来源 回溯算法也叫试探法&#xff0c;它是一种系统地搜索问题的解的方法。 用回溯算法解决问题的一般步骤&#xff1a; 1、 针对所给问题&#xff0c;定义问题的解空间&#xff0c;它至少包含问题的一个&#xff08;最优&#xff09;解。 2 、确定易于搜…

【论文阅读】-- Visual Analytics for Model Selection in Time Series Analysis

时间序列分析中模型选择的可视化分析 摘要1 引言2 相关工作3 问题表征3.1 Box-Jenkins 方法论3.2 ARIMA 和季节性 ARIMA 模型3.3 模型规范3.4 模型拟合3.5 模型诊断 4 需求分析5 VA 用于时间序列分析中的模型选择5.1 VA选型流程说明5.2 TiMoVA 原型5.2.1 实施选择5.2.2 图形用户…

【在Linux世界中追寻伟大的One Piece】HTTPS协议原理

目录 1 -> HTTPS是什么&#xff1f; 2 -> 相关概念 2.1 -> 什么是"加密" 2.2 -> 为什么要加密 2.3 -> 常见的加密方式 2.4 -> 数据摘要 && 数据指纹 2.5 -> 数字签名 3 -> HTTPS的工作过程 3.1 -> 只使用对称加密 3.2 …

《linux系统内核设计与实现》-实现最简单的字符设备驱动

开发linux内核驱动需要以下4个步骤&#xff1a; 1 编写hello驱动代码 驱动代码如下 helloDev.c&#xff0c;这是一个最小、最简单的驱动&#xff0c;去掉了其他的不相干代码&#xff0c;尽量让大家能了解驱动本身。 #include <linux/module.h> #include <linux/mod…

导航栏样式,盒子模型

1.代码 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><style>li{he…

MySQL5.7下载及安装详细教程

我下载的是MySQL 5.7.43 &#xff0c;以下是详细下载安装过程 一、下载过程步骤 1、进入官方网站&#xff1a;https://www.mysql.com/ 2、首页滑到最下面&#xff0c;找到MySQL Community server 3、选择你想要的版本和电脑对应配置进行下载 4、下载完后&#xff0c;保存解…

Google Earth Engine(GEE)——ui.Panel添加到地图上

结果 函数 ui.root.add(widget) 将一个widget添加到根面板上。 返回根面板。 参数。 widget&#xff08;ui.Widget&#xff09;。 要添加的widget。 返回&#xff1a; ui.Panel 代码 //label var label ui.Label({ value: "text label", style: {fontSi…

vscode使用Git的常用操作

主打一个实用 查看此篇之前请先保证电脑安装了Git&#xff0c;安装教程很多&#xff0c;可自行搜索 一.初始化本地仓库&#x1f534; 使用vscode打开项目文件夹如图所使初始化仓库&#xff0c;相当于命令行的git init 二.提交到暂存区&#x1f534; 二.提交到新版本&#x1f…

代码随想录算法训练营第25天|LeetCode 491.递增子序列、46.全排列、47.全排列 II

1.LeetCode 491.递增子序列 题目链接&#xff1a;https://leetcode.cn/problems/non-decreasing-subsequences/description/ 文章链接&#xff1a;https://programmercarl.com/0491.递增子序列.html 视频链接&#xff1a;https://www.bilibili.com/video/BV1EG4y1h78v/ 思路&am…

归并排序详解(递归与非递归)

归并排序是建立在归并操作上的一种有效算法。该算法是采用分治法的一个非常典型的应用。将已有序的子序列合并&#xff0c;得到完全有序的序列&#xff1b;即先使每个子序列有序&#xff0c;再使子序列间断有序。若将两个有序表合并成一个有序表&#xff0c;成为二路归并。 一…

【6】图像分类部署

【6】图像分类部署 文章目录 前言一、将pytorch模型转为ONNX二、本地终端部署2.1. ONNX Runtime部署2.2. pytorch模型部署&#xff08;补充&#xff09; 三、使用flask的web网页部署四、微信小程序部署五、使用pyqt界面化部署总结 前言 包括将训练好的模型部署在本地终端、web…

【Android】自定义换肤框架01之皮肤包制作

前言 目前为止&#xff0c;市面上主流的安卓换肤方案&#xff0c;其实原理都是差不多的 虽然大多都号称一行代码集成&#xff0c;但其实想要做到完全适配&#xff0c;并不简单 这个系列&#xff0c;就是让大家从零开始&#xff0c;完全掌握这方面知识&#xff0c;这样才能对…

RabbitMq - Java客户端基础【简单案例 +Work模型】

目录 1、前置知识 1.1、AMQP怎么理解 1.2、Spring AMQP是什么 1.3、为什么要了解Spring-AMQP&#xff1f; 2、使用Spring-AMQP实现一个发消息案例 3、Work模型 问题&#xff1a; 优化&#xff1a; 小结&#xff1a;Work模型的使用&#xff1a; 1、前置知识 1.1、AMQP怎…

【WPF】桌面程序开发之xaml页面基础布局方式详解

使用Visual Studio开发工具&#xff0c;我们可以编写在Windows系统上运行的桌面应用程序。其中&#xff0c;WPF&#xff08;Windows Presentation Foundation&#xff09;项目是一种常见的选择。然而&#xff0c;对于初学者来说&#xff0c;WPF项目中xaml页面的布局设计可能是一…

EtherCAT转Profinet网关配置说明第三讲:博图配置

EtherCAT协议转Profinet协议网关模块&#xff08;XD-ECPNS20&#xff09;是实现EtherCAT协议和Profinet协议之间无缝通讯的重要设备。使EtherCAT协议和Profinet协议能够相互转换&#xff0c;进行工控自动化里的互连和传送数据。 EtherCAT作为一种高性能实时以太网通信协议&…

【讲解下iOS语言基础】

&#x1f308;个人主页: 程序员不想敲代码啊 &#x1f3c6;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f44d;点赞⭐评论⭐收藏 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共…

【Linux详解】进程等待 | 非阻塞轮询

引入&#xff1a; 为什么&#xff1f;是什么&#xff1f;怎么办 是什么&#xff1f; 进程等待是指父进程暂停自己的执行&#xff0c;直到某个特定的子进程结束或发生某些特定的事件。 为什么&#xff1f; 僵尸进程刀枪不入&#xff0c;不可被杀死&#xff0c;存在内存泄露…

Linux_实现简易日志系统

目录 1、认识可变参数 2、解析可变参数 3、打印可变参数 3.1 va_list 3.2 va_start 3.3 va_arg 3.4 va_end 3.5 小结 4、实现日志 4.1 日志左半部分 4.2 日志右半部分 4.3 日志的存档归类 结语 前言&#xff1a; 在Linux下实现一个日志系统&#xff0c;该日…

ffmpeg图片视频编辑器工具的安装与使用

title: ffmpeg图片视频编辑器工具的安装与使用 tags: [ffmpeg, 图片, 音频, 视频, 工具, 流媒体] categories: [工具, ffmpeg] FFmpeg是一个开源的命令行工具&#xff0c;广泛用于处理视频和音频文件&#xff0c;包括转换格式、剪辑、混流、解码、编码等。以下是一些基本的FFmp…