【机器学习】机器学习学习笔记 - 监督学习 - KNN线性回归岭回归 - 02

监督学习

KNN (k-nearest neighbors)

  • KNN 是用 k 个最近邻的训练数据集来寻找未知对象分类的一种算法
from sklearn import neighbors# 分类
# 创建KNN分类器模型并进行训练
classifier = neighbors.KNeighborsClassifier(num_neighbors, weights='distance')
classifier.fit(X, y)test_datapoint = [4.5, 3.6]# 提取KNN分类结果
dist, indices = classifier.kneighbors([test_datapoint])# 回归
# 定义并训练回归器
knn_regressor = neighbors.KNeighborsRegressor(n_neighbors, weights='distance')
# 预测
y_values = knn_regressor.fit(X, y).predict(x_values)

pdf在线免费转word文档 https://orcc.online/pdf

线性回归

  • 优点: 简单、速度快
  • 缺点: 普通线性回归对异常值敏感,会破坏整个模型, 可以使用岭回归的方法优化
  • 缺点: 拟合准确度相对不高
  • 回归是估计输入数据与连续值输出数据之间关系的过程
  • 线性回归的目标是提取输入变量与输出变量的关联线性模型
  • 普通最小二乘法(Ordinary Least Squares,OLS): 要求实际输出与线性方程, 预测的输出的残差平方和(sum of squares of differences)最小化
# -*- coding: UTF-8 -*-import sys
import numpy as np
from sklearn import linear_model
import matplotlib.pyplot as plt# 数据准备
X = [1,2,3,4,5,6,7,8,9,10]
y = [22,22,23,24,25,27,27,30,29,30]# 取80%的样本作为训练数据
num_training = int(0.8 * len(X))
num_test = len(X) - num_training# 训练数据 80% reshape:(行数,列数)
# 行数:样本数
# 列数:特征数
X_train = np.array(X[:num_training]).reshape((num_training,1))
y_train = np.array(y[:num_training])# 测试数据 20%
X_test = np.array(X[num_training:]).reshape((num_test,1))
y_test = np.array(y[num_training:])# 创建线性回归对象
linear_regressor = linear_model.LinearRegression()# 用训练数据集训练模型
linear_regressor.fit(X_train, y_train)# 用训练好的模型预测测试数据集
# 预测数据
y_test_pred = linear_regressor.predict(X_test)
print('测试数据集的预测结果:',y_test_pred)
# 创建一个空白的窗口
plt.figure()
# 画出训练数据 散点图 -- 测试数据实际值
plt.scatter(X_test, y_test, color='green')
# 画出预测数据 折线图
plt.plot(X_test, y_test_pred, color='black', linewidth=4)
plt.title('Training data')
plt.show()

岭回归

  • 岭回归是一种线性回归模型, 它通过对数据进行截距处理, 使得回归系数的绝对值不超过给定阈值
  • 岭回归的优点是可以减小过拟合的风险, 并且可以处理异常值
  • 岭回归的缺点是它对数据进行了截距处理
# 创建龄回归对象
# alpha:正则化力度, 控制回归器复杂度,趋近于0就是常规最小二乘法, 对异常值不敏感就设置一个较大值
# alpha取值范围为0~1小数值、1~10整数值
# fit_intercept:是否使用截距
# max_iter:最大迭代次数
ridge_regressor = linear_model.Ridge(alpha=0.8, fit_intercept=True, max_iter=100)

IT免费在线工具网 https://orcc.online

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/3945.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

前端面试题合集

1.对前端监控的理解? 异常监控(监控前端页面的报错)> try / catch 、window.onerror、window.addEventListener、Vue.config.errorHandle JS 代码运行错误、语法错误等;AJAX 请求错误;静态资源加载错误&#xff1…

硬件21、接线端子XH2.54、2.54排针排母、2510接插件、PH2.0、町洋接线端子5.08、ISP接口JTAG插座

XH2.54端子的间距为2.54毫米,2.54排针排母的间距也是2.54mm,2510接插件也是2.54、而PH2.0端子的间距为2.0毫米,町洋接线端子插针间的距离是5.08mm,ISP接口JTAG插座针脚的间距一般也是2.54mm XH2.54 针脚间距为2.54mm 插头 接线…

如何使用 Internet Download Manager (IDM) 来加速和优化你的下载体验 IDM 6.41下载神器

在当今信息爆炸的时代,下载文件和媒体内容已成为我们日常生活的一部分。无论是工作学习还是娱乐休闲,我们都需要从互联网上下载各种资源。为了提高下载效率和确保文件完整性,选择一款优秀的下载管理软件至关重要。Internet Download Manager …

浅谈游戏机制

浅谈游戏机制 前言什么是游戏机制?机制组成机制类别结语 前言 最近在编写游戏开发文档的时候了解到游戏机制,第一次接触游戏机制的概念难免有些陌生,但感觉又跟常见,在网上查阅浏览了一些资料后了解到游戏机制还不止一个。 现在将…

vue echarts 柱状图 堆叠柱状图

echarts堆叠柱状图&#xff08;效果图在文章末尾&#xff09; 1、默认只显示 月度的 数据&#xff0c;手动点击 legend 季度的 数据才会显示&#xff1b; 2、监听左侧菜单栏的宽度变化&#xff0c;图表宽度自适应展示 <template><div><div id"barChart&q…

优雅实现uniapp返回上一页传参

在移动端应用中&#xff0c;表单设置组件往往作为独立的页面层级存在&#xff0c;以实现如时间选择等复杂功能。当用户在该组件页面内选定特定时间后&#xff0c;如何将这一选择结果高效、有序地传递回原页面&#xff0c;成为一个颇具挑战性的任务。尽管可以借助Vuex进行全局状…

构建数字化银行:现代化总架构探究

随着科技的迅速发展和用户需求的不断变化&#xff0c;传统银行业正迎来一场数字化转型的浪潮。在这个数字化时代&#xff0c;银行需要构建现代化的总架构&#xff0c;以适应快速变化的市场环境和客户需求。本文将深入探讨数字化银行的总架构设计理念、关键技术以及实践经验&…

【Python】使用 argparse 来加载yml文件的内容 - 2

继续上一节&#xff1a;【Python】YAML&#xff08;.yml&#xff09;文件简介以及python示例 - 1 使用 argparse 模块来读取 .yml 文件并不是直接由 argparse 完成的&#xff0c;但可以使用 argparse 来处理命令行参数&#xff0c;使得用户能够指定 .yml 配置文件的路径&#…

乘数而上,创邻科技入选2024数商典型应用场景“乘数榜”

4月18日&#xff0c;由浙江省科学技术协会指导的2024未来数商大会在杭州成功举办。本次大会以“场景突破 乘数而上”为主题&#xff0c;国际国内数商共聚未来科技城学术交流中心&#xff0c;聚焦数据要素市场的制度创新、数据治理、场景应用与生态构建等话题展开研讨。 大会现…

软件需求管理规程(Word原件2024)

软件开发人员及用户往往容易忽略信息沟通&#xff0c;这导致软件开发出来后不能很好地满足用户的需要&#xff0c;从而造成返工。而返工不仅在技术上给开发人员带来巨大的麻烦&#xff0c;造成人力、物力的浪费&#xff0c;而且软件的性能也深受影响。所以在软件项目开发周期的…

村集体建设用地,开发乡村旅游项目,土地如何审批?

以村集体建设用地,开发乡村旅游项目,土地如何审批? 乡村&#xff0c;作为承载乡村旅游产业的载体&#xff0c;在乡村振兴中扮演着非常重要的角色。 项目的落地&#xff0c;可靠的土地是必要的前提。集体建设用地如何审批&#xff1f;农转非又需要什么样的流程&#xff0c;具体…

StarRocks x Paimon 构建极速实时湖仓分析架构实践

Paimon 介绍 Apache Paimon 是新一代的湖格式&#xff0c;可以使用 Flink 和 Spark 构建实时 Lakehouse 架构&#xff0c;以进行流式处理和批处理操作。Paimon 创新性地使用 LSM&#xff08;日志结构合并树&#xff09;结构&#xff0c;将实时流式更新引入 Lakehouse 架构中。 …

什么ISP是住宅IP,和普通IP有什么区别?

ISP&#xff08;Internet Service Provider&#xff09;即互联网服务提供商&#xff0c;是向广大用户综合提供互联网接入业务、信息业务和增值业务的电信运营商。住宅IP&#xff0c;也称为家庭IP&#xff0c;是指由ISP分配给家庭或个人用户的IP地址。这些IP地址是真实的&#x…

Kotlin基础​​

数据类型 定义变量 var表示定义变量&#xff0c;可以自动推导变量类型&#xff0c;所以Int可以不用写。 定义常量 条件语句 if表达式可以返回值&#xff0c;该值一般写在if里的最后一行 类似switch的用法 区间 循环 a是标签&#xff0c;可以直接break到标签的位置&#xf…

【JVM】从i++到JVM栈帧

【JVM】从i到JVM栈帧 本篇博客将用两个代码例子&#xff0c;简单认识一下JVM与栈帧结构以及其作用 从i与i说起 先不急着看i和i&#xff0c;我们来看看JVM虚拟机&#xff08;请看VCR.JPG&#xff09; 我们初学JAVA的时候一定都听到过JAVA“跨平台”的特性&#xff0c;也就是…

18 JavaScript学习:错误

JavaScript错误 JavaScript错误通常指的是在编写JavaScript代码时发生的错误。这些错误可能是语法错误、运行时错误或逻辑错误。以下是对这些错误的一些常见分类和解释&#xff1a; 语法错误&#xff1a; 这类错误发生在代码编写阶段&#xff0c;通常是由于代码不符合JavaScrip…

Linux常用指令001

实验案例 创建一个和你名字同名的用户 在当前目录下创建名称为 1212的目录 进入到 1212 目录中 创建 a~d 目录 创建 1~10.txt 文件&#xff0c;如下 备份 创建一个和 1212 同一级目录的新目录 1313 将所有的文件和目录备份到 1313 目录中 在 1313目录中&#xff0c;查看…

小程序中如何快速给分类添加商品

​快速在分类下面上传商品&#xff0c;并且能够设置商品顺序&#xff0c;关系到运营效率的高低。下面就具体介绍如何快速在某个分类下面设置商品。 一、在商品管理处&#xff0c;查询某个分类下面的商品。 进入小程序管理员后台->商品管理&#xff0c;点击分类输入框&…

4月26日划分字母区间+合并区间

736.划分字母区间 给你一个字符串 s 。我们要把这个字符串划分为尽可能多的片段&#xff0c;同一字母最多出现在一个片段中。 注意&#xff0c;划分结果需要满足&#xff1a;将所有划分结果按顺序连接&#xff0c;得到的字符串仍然是 s 。 返回一个表示每个字符串片段的长度…

Xilinx 7系列中clock IP核通过AXI4-Lite接口实现动态重新配置

当选择了动态重配置&#xff08;Dynamic Reconfiguration&#xff09;选项时&#xff0c;AXI4-Lite接口将默认被选中用于重新配置时钟组件。动态重新配置可以通过AXI4-Lite接口实现了Clocking Wizard IP核的时钟组件MMCM/PLL的动态重新配置。 如果需要直接访问MMCM/PLL的DRP寄…