C++视觉开发 三.缺陷检测

一.距离变换

1.概念和功能

距离变换是一种图像处理技术,用于计算图像中每个像素到最近的零像素(背景像素)的距离。它常用于图像分割、形态学操作和形状分析等领域。它计算图像中每个像素到最近的零像素(背景像素)的距离。这个距离可以是欧氏距离、曼哈顿距离等。距离变换后的图像中,前景像素的值代表它们到最近的背景像素的距离。

具体来说,距离变换在缺陷检测中有以下几个重要作用:

1.前景与背景的分离: 距离变换能够突出前景区域,使其与背景更明显地分离开。前景区域的像素值会表示其到最近背景像素的距离,这样可以更容易地识别和处理前景对象。

2.前景对象的中心检测: 距离变换的结果图像中,距离值最大的像素往往位于前景对象的中心位置。因此,通过距离变换,可以有效地检测出前景对象的中心点,为后续的形态学处理和轮廓检测提供可靠的信息。

3.分水岭算法的预处理: 距离变换常用于分水岭算法的预处理步骤,通过距离变换可以生成标记图像,这些标记可以帮助分水岭算法准确地分割图像中的各个对象。

4.形态学重建: 距离变换可以结合形态学操作进行形态学重建,用于去除图像中的小噪声和伪影,使前景对象更加清晰。

2.函数语法

示例:

// 距离变换
cv::Mat dist_transform;
cv::distanceTransform(op, dist_transform, cv::DIST_L2, 3);
cv::normalize(dist_transform, dist_transform, 0, 1.0, cv::NORM_MINMAX);// 阈值处理
cv::Mat fore;
cv::threshold(dist_transform, fore, 0.3, 1.0, cv::THRESH_BINARY);
fore.convertTo(fore, CV_8U);

1. cv::distanceTransform 

功能:用于计算二值图像中每个前景像素到最近背景像素的距离。

函数语法:

void cv::distanceTransform(InputArray src, OutputArray dst, int distanceType, int maskSize, int dstType = CV_32F);

参数含义
src

输入图像,通常是一个二值图像。

其中非零像素被视为前景,零像素被视为背景。

dst

输出图像,包含每个像素到最近背景像素的距离。

默认情况下,输出图像是一个32位浮点图像(CV_32F)。

distanceType

距离类型,指定距离的计算方式。常用的类型有:

cv::DIST_L1:曼哈顿距离(每个像素的邻居为上下左右四个方向)。

cv::DIST_L2:欧氏距离(每个像素的邻居为周围八个方向)。

cv::DIST_C:棋盘距离(类似于曼哈顿距离,但允许对角线方向移动)

maskSize掩码大小,影响距离计算的精度。可以是3、5或cv::DIST_MASK_PRECISE(在精确距离变换中使用)。常用值为3。
dstType

输出图像的类型。默认值为CV_32F,表示32位浮点图像。

可以更改为其他类型,如CV_8U(8位无符号整数)等。

2.cv::normalize 

功能:用于将数组的值归一化到指定的范围内。它可以应用于图像处理中的多种场景,例如将距离变换的结果归一化到 [0, 1] 或 [0, 255],从而便于可视化和后续处理。

函数语法:

void cv::normalize(
InputArray src, 
OutputArray dst, 
double alpha, 
double beta, 
int norm_type = cv::NORM_L2, 
int dtype = -1, 
InputArray mask = noArray()
);
参数含义
src输入数组或图像
dst输出数组或图像,与输入数组具有相同的大小和类型,或者具有指定的类型。
alpha

归一化后数组中最小值的目标值。

如果 norm_type 是 cv::NORM_MINMAX,这个参数表示归一化后的最小值。

beta

归一化后数组中最大值的目标值。

如果 norm_type 是 cv::NORM_MINMAX,这个参数表示归一化后的最大值。

norm_type

归一化类型。可以是以下之一:

cv::NORM_INF:归一化为无穷范数(最大绝对值)。

cv::NORM_L1:归一化为 L1 范数(绝对值之和)。

cv::NORM_L2:归一化为 L2 范数(平方和的平方根)。

cv::NORM_MINMAX:线性变换,将数组值线性缩放到 [alpha, beta] 范围。

dtype(可选)输出数组的类型。如果为 -1,则输出数组的类型与输入数组相同。
mask (可选)可选的操作掩码。仅对掩码内的元素进行归一化处理。

           只用前5个就够了

3.fore.convertTo

功能:将矩阵转换为另一种数据类型的函数。此函数通常用于图像处理中的数据类型转换,以确保图像处理操作使用正确的数据类型。

函数语法:

void cv::Mat::convertTo(OutputArray m, int rtype, double alpha , double beta)
参数含义
m输出矩阵,类型由 rtype 指定。
rtype输出矩阵的类型。可以是 CV_8U(8 位无符号整数)、CV_32F(32 位浮点数)等。
alpha可选的比例因子,默认值为 1。输出矩阵的每个元素是输入矩阵相应元素乘以 alpha
beta 可选的加数,默认值为 0。输出矩阵的每个元素是输入矩阵相应元素乘以 alpha 再加上 beta

二.缺陷检测

通过计算轮廓面积和最小外接圆的面积比值来判断是否存在缺陷

1.cv::minEnclosingCircle 最小外接圆

功能:找到一个最小的圆,使得圆能够完全包围给定的轮廓。

函数语法:

void cv::minEnclosingCircle(InputArray points, Point2f& center, float& radius);
参数含义
points输入的点集,可以可以是一个点的向量或Mat。
center输出参数,存储最小外接圆的圆心坐标。
radius输出参数,存储最小外接圆的半径。

2.完整代码示例

#include <opencv2/opencv.hpp>
#include <iostream>int main() {// 读取图像cv::Mat o = cv::imread("pill3.jpg", cv::IMREAD_GRAYSCALE);if (o.empty()) {std::cerr << "Could not open or find the image!" << std::endl;return -1;}// 二值化处理cv::Mat binary;cv::threshold(o, binary, 0, 255, cv::THRESH_BINARY + cv::THRESH_OTSU);// 形态学开运算cv::Mat kernel = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(5, 5));cv::Mat op;cv::morphologyEx(binary, op, cv::MORPH_OPEN, kernel, cv::Point(-1, -1), 1);// 距离变换cv::Mat dist_transform;cv::distanceTransform(op, dist_transform, cv::DIST_L2, 3);cv::normalize(dist_transform, dist_transform, 0, 1.0, cv::NORM_MINMAX);// 阈值处理cv::Mat fore;cv::threshold(dist_transform, fore, 0.3, 1.0, cv::THRESH_BINARY);fore.convertTo(fore, CV_8U);// 形态学去噪cv::Mat kernel2 = cv::getStructuringElement(cv::MORPH_RECT, cv::Size(3, 3));cv::Mat op2;cv::morphologyEx(fore, op2, cv::MORPH_OPEN, kernel2, cv::Point(-1, -1), 1);// 提取轮廓std::vector<std::vector<cv::Point>> contours;cv::findContours(op2, contours, cv::RETR_TREE, cv::CHAIN_APPROX_SIMPLE);// 缺陷检测int count = 0;cv::Mat img = o.clone();for (size_t i = 0; i < contours.size(); i++) {cv::Point2f center;float radius;cv::minEnclosingCircle(contours[i], center, radius);double area = cv::contourArea(contours[i]);double area_circle = 3.14 * radius * radius;if (area / area_circle >= 0.5) {cv::putText(img, "OK", center, cv::FONT_HERSHEY_COMPLEX, 1, cv::Scalar(255, 255, 255), 2);}else {cv::putText(img, "bad", center, cv::FONT_HERSHEY_COMPLEX, 1, cv::Scalar(255, 255, 255), 2);}count++;}cv::putText(img, "sum=" + std::to_string(count), cv::Point(20, 30), cv::FONT_HERSHEY_COMPLEX, 1, cv::Scalar(255, 255, 255));// 显示结果cv::imshow("result", img);cv::waitKey(0);cv::destroyAllWindows();return 0;
}

结果如图:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/39070.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

苍穹外卖--sky-take-out(五)前端

大部分笔记都是写在语雀的&#xff0c;这是一次性从本人语雀复制过来的&#xff0c;可能结构有些错乱 基础创建 环境要求 node.js npm Vue CLI 创建前端工程 使用vue ui命令创建 项目结构 启动项目 打开命令行窗口 快捷键ctrlj 或者 运行 输入&#xff1a;npm run ser…

010-GeoGebra基础篇-动态验证三角形外接圆的圆心是否可以位于三角形的外部

接下来我们将进行一些稍微高级一点操作&#xff0c;一边学习新东西的同时&#xff0c;也开始对数学、物理等内容的研究。 目录 一、项目截图二、涉及内容三、问题设置1. 问题提出2. 验证方案 三、做图步骤1. 绘制定点A、B&#xff1b;2. 绘制动点C&#xff1b;&#xff08;1&am…

万界星空科技铜管加工行业MES系统解决方案

一、行业背景与挑战 随着铜管加工行业的快速发展&#xff0c;传统的管理模式已难以满足日益增长的生产需求。为满足市场的高效率、高质量、低成本要求&#xff0c;企业急需一套智能化的管理系统来提升生产效率、优化资源配置和确保产品质量。因此&#xff0c;我们针对铜管加工行…

常用的限流算法有哪些?你听说过几种?

限流&#xff0c;就是指限制流量请求的频次。 在高并发情况下&#xff0c;它是一种保护系统的策略&#xff0c;避免了在流量高峰时系统崩溃&#xff0c;造成系统的不可用。 常见的限流算法有&#xff1a; 计数器限流算法滑动窗口限流算法漏桶限流算法令牌桶限流算法 1. 计数器…

【Python程序开发系列】教你使用Docker部署一个简单的Python应用程序(案例+源码)

这是我的第313篇原创文章。 一、引言 Docker 对于程序员来说&#xff0c;其实和Git差不多&#xff0c;基本上属于一个必备工具。如果你想使用这个工具&#xff0c;你就必须安装这个应用工具&#xff0c;至于在不同操作系统上安装Docker的方式网上有很多教程&#xff0c;这里不…

每天五分钟深度学习:解决for循环效率慢的关键在于向量化

本文重点 上一节课程中,我们学习了多样本的线性回归模型,但是我们的伪代码实现中使用了大量的for循环,这样代码的问题是效率很低。为了克服这一瓶颈,向量化技术应运而生,成为提升程序执行效率、加速数据处理速度的重要手段。 向量化技术概述 向量化(Vectorization)是…

MySQL-核心知识要点

1、索引的数据结构-Btree BTree的优势&#xff1a; B树的内节点无data&#xff0c;一个节点可以存储更多的K-V对。在构造树时&#xff0c;需要的内节点会更少&#xff0c;那么树的层级也会越低。查询一条数据时&#xff0c;1. 扫描的层级低&#xff0c;扫描过的节点更少&…

【netty系列-04】反应堆模式的种类和具体实现

Netty系列整体栏目 内容链接地址【一】深入理解网络通信基本原理和tcp/ip协议https://zhenghuisheng.blog.csdn.net/article/details/136359640【二】深入理解Socket本质和BIOhttps://zhenghuisheng.blog.csdn.net/article/details/136549478【三】深入理解NIO的基本原理和底层…

数字化转型中,数字化如何重塑中小企业发展力?

引言&#xff1a;当前&#xff0c;我国中小微企业数字化转型处于“不平衡、不充分、不规范”阶段&#xff0c;普遍面临“不会转”“不能转”“不敢转”的困境。数字化转型可以帮助企业突破这些困境&#xff0c;实现更大的发展。更进一步&#xff0c;数字化转型是中小企业高质量…

学习笔记——动态路由——IS-IS中间系统到中间系统(基本概念)

二、IS-IS基本概念 1、IS-IS概述 IS-IS是ISO定义的OSI协议栈中的无连接网络服务(ConnectionLess Network Service&#xff0c;CLNS)的一部分&#xff0c;IS-IS是一种链路状态路由协议&#xff0c;IS-IS与OSPF在许多方面非常相似&#xff0c;例如&#xff0c;运行IS-IS协议的直…

4.BeanFactory

可以看出BeanFactory表面上只有getBean相关的方法。 实际上控制反转、基本的依赖注入、Bean的生命周期的各种功能&#xff0c;都是由BeanFactory的实现类来实现的。&#xff08;DefaultListableBeanFactory&#xff09; DefaultListableBeanFactory管理单例对象DefaultSinglet…

杨万里,诚斋体的开创者

杨万里&#xff0c;字廷秀&#xff0c;号诚斋&#xff0c;生于南宋绍兴元年&#xff08;公元1127年&#xff09;&#xff0c;卒于南宋庆元二年&#xff08;公元1206年&#xff09;&#xff0c;享年79岁。在中国古代文学的璀璨星河中&#xff0c;南宋诗人杨万里以其清新脱俗、贴…

Android- Framework 非Root权限实现修改hosts

一、背景 修改system/etc/hosts&#xff0c;需要具备root权限&#xff0c;而且remount后&#xff0c;才能修改&#xff0c;本文介绍非root状态下修改system/etc/hosts方案。 环境&#xff1a;高通 Android 13 二、方案 非root&#xff0c;system/etc/hosts只有只读权限&…

机器学习python实践——关于管道模型Pipeline和网格搜索GridSearchCV的一些个人思考

最近在利用python跟着指导书进行机器学习的实践&#xff0c;在实践中使用到了Pipeline类方法和GridSearchCV类方法&#xff0c;并且使用过程中发现了一些问题&#xff0c;所以本文主要想记录并分享一下个人对于这两种类方法的思考&#xff0c;如果有误&#xff0c;请见谅&#…

【微服务】微服务之Feign 与 Ribbon

文章目录 强烈推荐引言优点Feign示例什么是Ribbon&#xff1f;Ribbon 的优点Netflix Feign 和 Ribbon整合Feign 与 Ribbon 的关系Feign 与 Ribbon 结合使用的示例配置文件&#xff08;application.yml&#xff09;说明&#xff1a; Feign 与 Ribbon 结合使用的应用场景1. 动态服…

物联网的技术和应用有哪些?

随着科技的飞速发展&#xff0c;物联网已经成为连接世界的重要纽带&#xff0c;塑造着我们未来的生活。我们一起深入探索物联网的前沿技术和前瞻性应用&#xff0c;一窥未来的可能性。 获取物联网解决方案&#xff0c;YesPMP平台一站式物联网开发服务。 提示&#xff1a;智慧家…

图形的搭建

例一&#xff1a; 输入描述&#xff1a; 多组输入&#xff0c;一个整数&#xff08;2~20&#xff09;&#xff0c;表示输出的行数&#xff0c;也表示组成“X”的反斜线和正斜线的长度。 输出描述&#xff1a; 针对每行输入&#xff0c;输出用“*”组成的X形图案。 示例一&…

爬数据是什么意思?

爬数据的意思是&#xff1a;通过网络爬虫程序来获取需要的网站上的内容信息&#xff0c;比如文字、视频、图片等数据。网络爬虫&#xff08;网页蜘蛛&#xff09;是一种按照一定的规则&#xff0c;自动的抓取万维网信息的程序或者脚本。 学习一些爬数据的知识有什么用呢&#x…

IPIDEA代理IP助力高效数据采集

IPIDEA代理IP助力高效数据采集 文章目录 IPIDEA代理IP助力高效数据采集&#x1f4d1;前言一、爬虫数据采集痛点二、代理IP解决爬虫痛点2.1 为什么可以2.2 选择代理IP的关键因素 三、IPIDEA海外IP代理的优势3.1 IPIDEA的显著优势3.2 IPIDEA的代理类型及应用 四、IPIDEA爬虫实战4…

Fragment+Viewpage2+FragmentStateAdapter实现滑动式标签布局

大家好&#xff0c;我是网创有方&#xff0c;今天记录下标签布局的实现方法&#xff0c;先看下效果图。 第一步&#xff1a;编写一个activity或者fragment。内含有一个viewpager2的适配器&#xff0c;适配器类型为FragmentStateAdapter。 ​ public class MediaCreateFragment…