一键进阶ComfyUI!懂AI的设计师现在都在用的节点式Stable Diffusion

前言

_一键进阶ComfyUI!懂AI的设计师现在都在用的节点式Stable Diffusion

万字教程!奶奶看了都会的 ComfyUI 入门教程

推荐阅读 一、川言川语 大家好,我是言川。

阅读文章 >

](https://www.uisdc.com/comfyui-3)

目前使用 Stable Diffusion 进行创作的工具主要有两个:WebUI 和 ComfyUI。而更晚出现的 ComfyUI 凭借超高的可定制性和复现性迅速火遍全球。有设计师表示 SD 发布了 XL1.0 后,ComfyUI 用它优秀的底层逻辑率先打击了臃肿不稳定的 WebUI1.6,成为更适合“体验”XL 的 SD 生图工具。

本文就来具体介绍一下 ComfyUI 是什么?为什么好?怎么用?

一、ComfyUI 简介

ComfyUI 是一个专为 Stable Diffusion 设计的基于节点的图形用户界面(GUI),简单来说就是将整个图像生成过程分解为多个独立的节点,每个节点都有自己独立的功能,例如加载模型,文本提示,生成图片等等。每个模块通过输入和输出的线连在一起变成一个完整的工作流。

一键进阶ComfyUI!懂AI的设计师现在都在用的节点式Stable Diffusion

整个过程用户可以灵活的调整和配置不同的功能节点,这就代表整个模型更加自由,控制更加精准。

二、LDM 底层逻辑

相比于 WebUI,ComfyUI 的工作流模式更加贴近 Stable Diffusion 的底层运行逻辑,这对于新手来说有一定的学习门槛,但是在完全掌握以后使用 ComfyUI 将会变得非常轻松,同时在 AI 盛行的时代,懂得一些底层逻辑也有助于设计师后续的发展。所以本文将结合 SD 的底层逻辑和大家简单解释 ComfyUI 的基础节点。

Stable Diffusion 之所以叫 Stable,是因为公司叫 StabilityAI。其基础模型是 Latent Diffusion Model(LDM),翻译为潜在扩散模型,可以理解为主要的图片生成流程都在一个叫「latent space(潜在空间)」的魔法盒子里进行。

图片在这个空间存在的方式是我们无法识别的向量,我们只需要知道这些我们无法识别的东西所表示的信息和图片相差无几,但是数据尺寸却变得非常小就行,这是一个类似于压缩的过程,所以在这个空间中进行运行可以大大缩小运行内存。

这个过程可以简单理解为,向潜在空间输入文件,数据经过处理生成图片并输出。

一键进阶ComfyUI!懂AI的设计师现在都在用的节点式Stable Diffusion

以文本生图为例,我们现在来解释整个流程中包含的节点及作用。

输入文件包含了我们熟知的常规内容:文本和图片,也就对应着 Text2Image 和 Image2Image。但是文本内容计算机是无法理解的,所以我们需要将文本转换为计算机能够理解的信息,这个过程使用了 Clip 模型。(图片的转换是使用了 VAE 模型)

一键进阶ComfyUI!懂AI的设计师现在都在用的节点式Stable Diffusion

熟悉 WebUI 的朋友可以知道,控制模型实际生成部分的模型是 KSampler(采样器),在这其中我们可以控制迭代次数,种子数等等。而这个步骤就发生在潜在空间中。

一键进阶ComfyUI!懂AI的设计师现在都在用的节点式Stable Diffusion

我们在前面的内容可以知道,潜在空间的内容不是人类可以读取的内容,文本的输入需要转换,同样图片的输出也需要转换,这个过程同样使用了 VAE 模型。

一键进阶ComfyUI!懂AI的设计师现在都在用的节点式Stable Diffusion

这就是最基础的文生图过程,现在再回看 ComfyUI 的基础模型是不是会清晰很多。

一键进阶ComfyUI!懂AI的设计师现在都在用的节点式Stable Diffusion

而整个工作流的运行由大模型控制,所以在工作流以 CheckPoint 节点加载扩散模型为起点,CheckPoint 节点还会提供适当的 VAE 和 Clip 模型。但这并不影响工作流中使用自己选择的 VAE 和 Clip 模型。

到这里我们就已经完全了解了一个最基础的文生图过程和相对应的 ComfyUI 节点,更多进阶内容大家都可以更加深入的探索。

三、与 WebUI 的差异

作为现在最火爆的两大创作工具,WebUI 开箱即用,基本功能齐全,社区也有很多的插件支持,入门比较简单,适合新手,但是可定制性稍微差点,很多作品不容易传播复现,使用 API 进行操作也有一定的难度。

ComfyUI 虽然出来的晚一点,但是它的可定制性很强,可以让创作者搞出各种新奇的玩意,通过工作流的方式,也可以实现更高的自动化水平,创作方法更容易传播复现,发展势头特别迅猛。两者对比有非常多显著的差别。

1. ComfyUI 对显卡比较友好

即使是 GPU 小于 3G 的情况下也能正常工作。它占用的显存更少,在相同显存条件下能够生成更大尺寸的图像。同时,Mac 电脑也能顺利运行 ComfyUI(建议 M1 以上的电脑使用),虽然依旧达不到 Windos 的运行效率,但这也给 Mac 用户提供了一个可以使用 SD 生图的机会。而 WebUI 近乎抛弃了 12G 显存以下的用户,显存使用效率较低,更不提 Mac 用户。

2. ComfyUI 运行效率极大的提高

设计师通过 ComfyUI 和 Automatic1111 WebUI 运行了一批 20 张图像,以查看每张图像的总时间。这些图像基于 Stable Diffusion 1.5 模型,分辨率为 512x768。作为参考,使用的是 RTX 3060(12GB VRAM)。最后的结果如下

一键进阶ComfyUI!懂AI的设计师现在都在用的节点式Stable Diffusion

WebUI 要花费 ComfyUI 两倍多的时间,这是一个相当大的差距。当你使用 SD 生成视频渲染每一帧时这种时间差异会更加明显。

3. ComfyUI 可以实现实时预览

用户能够即时看到生成结果。这归功于节点拼接的高自由度,你可以在任何一个位置插入图片生成的功能节点,这样就可以在你想要预览图片的位置实时预览图片生成效果。

4. ComfyUI 可以完全实现工作流的复用

ComfyUI 的工作流可以单独作为 Json 文件保存,你可以通过下载的工作流文件直接使用理想效果的工作流,也可以在这份文件上进行任意的修改和添加。值得注意的是,通过 ComfyUI 生成的图片原文件也保留着工作流数据,也就是说,你只要下载社交媒体上设计师上传的图片原文件拖拽放入 ComfyUI 中,工作流会被立刻复现。

5. 与 WebUI 共通模型

WebUI 与 ComfyUI 本质都是使用 Stable Diffusion 大模型进行生图,只是使用方式不同,所以如果你是 WebUI 的老用户,你可以直接将 WebUI 中使用的模型与 ComfyUI 共通,过程非常简单,后面会提到。

四、使用技巧

在这里为新手的设计师提供一些你一定会用到的使用技巧:

1. ComfyUI Manager

ComfyUI 是完全通过节点组成,所以下载不同的节点是最开始就会遇到的问题。ComfyUI Manager 作为一个节点,你可以将它看作一个插件,它可以下载几乎所有你能使用到的节点,并且提供了更新、管理自定义节点等等的功能。下载了它几乎等于你不会再通过 Github 安装节点。

安装完成 ComfyUI Manager 后,重启 ComfyUI,在右边可以找到一个「manager」点击就可以进入插件界面。

一键进阶ComfyUI!懂AI的设计师现在都在用的节点式Stable Diffusion

其中有两个最常用的功能就是搜索安装节点和一键安装工作流中的所有缺失节点。

ComfyUI Manager:github.com/ltdrdata/ComfyUI-Manager

2. 将 WebUI 中的模型导入 ComfyUI

用过 WebUI 的设计师应该已经下载了很多自己顺手的模型,这些模型在 ComfyUI 中也是通用的,所以我们只需要共享这些模型就可以使用

具体流程如下:

  1. 在 ComfyUI 目录中,有一个 extra_model_paths.yaml.example 文件,将其重命名为 extra_model_paths.yaml
  2. 打开该文件,找到 base_path:path/to/stable-diffusion-webui/,将路径替换为你的 WebUI 的路径,例如 base_path:D/StableDiffusion/stable-diffusion-webui/
  3. 最后重启 ComfyUI,你就可以在 Load Checkpoint 中的 Ckpt_name 中找到
结语

设计是一门不断发展的艺术和科学。保持对新技术、新方法的好奇心,是我们不停向上走的助力。但尽管 AI 可以提供很多帮助,设计的核心仍然是人类的情感和体验。确保设计作品能够与用户产生情感共鸣,始终保持人性化的触感。希望我们能够继续发挥创造力和想象力,利用 AI 和其他新技术,创造出更多美丽、有用且有意义的设计作品。

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取
在这里插入图片描述

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

img

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/36855.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

SceneXplain 图片叙事升级:如何让图片听得到

SceneXplain 是一个由多模态 AI 驱动的产品服务,它不仅 提供一流的图像和视频标注解决方案,还具备卓越的多模态视觉问答能力,为用户解锁视觉内容的全新维度。 在[《图像描述算法排位赛》中,我们探讨了图像描述(Image …

有兄弟对这类区域比较感兴趣,也引起我的好奇,我提取出来给大家看看

要说这类地区,亚洲泰国排第二估计没人敢说第一吧,所以我就提取泰国的数据给大家看看! 如图:这些特殊服务地区主要集中在曼谷和芭提雅地区,芭提雅最多!看来管理还是不错的,限制在一定范围&#x…

便携应急气象站设备—实时监测和记录气象数据

TH-BQX10便携应急气象站设备是一种高度集成、轻便易携的气象观测系统。它采用新型一体化结构设计,能够快速安装和拆卸,适用于各种复杂环境。通过集成多种气象传感器,该设备能够实时监测和记录温度、湿度、风向、风速、降雨量、气压等多种气象…

AMEYA360:广和通发布LTE Cat.1 bis模组MC610-GL,赋能全球漫游追踪器

广和通LTE Cat.1 bis模组MC610-GL搭载展锐8910平台,覆盖全球主流LTE频段,下行峰值速率达10.3Mbps,上行速率达5.1Mbps,满足全球终端对4G速率连接的需求;同时支持LTE和GSM双模通信,便于用户灵活切换网络。在尺寸封装上&a…

开放式耳机怎么选?五大2024年口碑销量爆棚机型力荐!

作为一名数码测评up主,今天来测评市面上的开放式耳机。开放式耳机它的设计非常的新颖,不管是舒适的佩戴,还是可以边听音乐,边听到周围的声音,给人更加安全的听感体验。长时间佩戴,不仅舒适度进一步的提升&a…

【机器学习】高斯混合模型(Gaussian Mixture Models, GMM)深度解析

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 高斯混合模型(Gaussian Mixture Models, GMM)深度解析引…

【uml期末复习】统一建模语言大纲

前言: 关于uml的期末复习的常考知识点,可能对你们有帮助😉 目录 第一部分 概念与基础 第一章 面向对象技术 第二章 统一软件过程 第三章 UML概述 第四章 用例图 第五章 类图 第六章 对象图 第七章 顺序图 第八章 协作图 第九章 状态…

Transformers 安装与基本使用

文章目录 Github文档推荐文章简介安装官方示例中文情感分析模型分词器 Tokenizer填充 Padding截断 Truncation google-t5/t5-small使用脚本进行训练Pytorch 机器翻译数据集下载数据集格式转换 Github https://github.com/huggingface/transformers 文档 https://huggingface…

Selenium时间控件的处理

我们经常在做web自动化测试过程中会遇到时间控件,那么对于时间控件如何处理,我们可以来分析下。 对于时间控件一般分为两种: 1、普通的时间控件 直接通过send_keys就可以解决 d.get("https://www.ctrip.com/?sid155952&alliancei…

自定义 vant 的 van-calendar 日历控件

最近在做 vue 微信公众号项目&#xff0c; 有个自定义日历控件展示的需求&#xff0c;经过查阅资料&#xff0c;最终实现了如图所示效果&#xff0c;这里做了总结&#xff0c;需要的小伙伴可以参考一下&#xff1a; HTML代码&#xff1a; <template><div class"…

I/O系统

1. I/O接口 接口可以看做两个系统或两个部件之间的交接部分&#xff0c;它既可以是两种硬设备之间的连接电路&#xff0c;也可以是两个软件之间的共同逻辑边界。 I/O接口通常是指主机与I/O设备之间设置的一个硬件电路及其相应的软件控制。 2. 程序查询方式 程序查询方式是一…

知乎正通过乱码来干扰必应/谷歌等爬虫,从而限制中文数据集被用于AI训练

有用户反馈称使用微软必应搜索和谷歌搜索发现存在不少知乎乱码内容&#xff0c;即搜索结果里知乎内容的标题和正文内容都可能是乱码的&#xff0c;但抓取的正文前面一些段落内容可以正常查看。考虑到此前知乎已经屏蔽除百度和搜狗以外的所有搜索引擎爬虫 (蜘蛛 / 机器人)&#…

酣客的“FFC模式”|白酒商业模式|分润制度顶层架构设计

酣客公社摒弃传统商业模式&#xff0c;提出“心联网”及“FFC模式”的商业模式。 坐标&#xff1a;厦门&#xff0c;我是肖琳 深耕社交新零售行业10年&#xff0c;主要提供新零售系统工具及顶层商业模式设计、全案策划运营陪跑等。 今天和大家分享“酣客”的营销模式&#xff…

检信智能推出我国首款Allemotion OS基于AI生理心理参数服务开发者平台

检信Allemotion OS生理心理开发者平台是根据世界人工智能高速发展的特点,为实现脑机交互的行业需求&#xff0c;由检信智能推出我国首款检信Allemotion OS生理心理开发者平台。检信Allemotion OS生理心理开发者平台集成了振动影像心理情绪20项情绪参数、11项生理相关参数&#…

知识图谱——Neo4j数据库实战

数据与代码链接见文末 1.Neo4j数据库安装 JDK 安装:https://www.oracle.com/java/technologies/javase-downloads.html Neo4j 安装:https://neo4j.com/download-center/ 配置好 JDK 和 Neo4j 的环境变量

2、Redis持久化与高可用架构

一、Redis 持久化 RDB 快照&#xff08;Snapshot&#xff09; 基本概念&#xff1a;RDB&#xff08;Redis DataBase&#xff09;快照是将 Redis 内存中的数据在某个时间点保存到磁盘中的一种持久化方式&#xff0c;默认保存到 dump.rdb 的二进制文件中。通过 RDB 快照&#xff…

C# 中的 StreamReader 和 StreamWriter 类

在这里插入代码片StreamReader 和 StreamWriter 位于 System.IO 命名空间中。当您想要读取或写入基于字符的数据时&#xff0c;这两个类都很有用。这两个类都处理 Unicode 字符。 StreamReader 派生自抽象类“TextReader”&#xff0c;StreamWriter 派生自“TextWriter”。 下…

springboot系列七: Lombok注解,Spring Initializr,yaml语法

老韩学生 LombokLombok介绍Lombok常用注解Lombok应用实例代码实现idea安装lombok插件 Spring InitializrSpring Initializr介绍Spring Initializr使用演示需求说明方式1: IDEA创建方式2: start.spring.io创建 注意事项和说明 yaml语法yaml介绍使用文档yaml基本语法数据类型字面…

Rethinking Semantic Segmentation: A Prototype View 2022CVPR Oral

流行的语义分割方案的掩码解码策略&#xff08;基于参数softmax或基于像素查询&#xff09;视为可学习的类原型。本研究揭示了这种参数分割策略的几个局限性&#xff0c;并提出了一种基于不可学习原型的非参数替代方案。与之前的方法以完全参数化的方式为每个类学习单个权重/查…

ubuntu22.04编译安装tesseract

1、 为什么用自己编译安装&#xff0c;而不采用apt安装&#xff1f; 由于tesseract有很多依赖包&#xff0c;直接用deb包或者rpm包等安装包安装很复杂&#xff0c;不一定能成功安装。 2、安装基本的依赖包 sudo apt update sudo apt install g autoconf automake libtool pkg…