SceneXplain 图片叙事升级:如何让图片听得到

SceneXplain 是一个由多模态 AI 驱动的产品服务,它不仅 提供一流的图像和视频标注解决方案,还具备卓越的多模态视觉问答能力,为用户解锁视觉内容的全新维度。

在[《图像描述算法排位赛》中,我们探讨了图像描述(Image Caption)算法如何能够解码和诠释复杂的视觉信息。这些算法不仅仅地告诉你“图中有一个苹果”,更能深入到场景的分析,描述为“一个洒满阳光的窗台上,熟透的红苹果鲜艳而饱满,散发着诱人的甜香”。

为了进一步优化用户体验,SceneXplain 最近进行了一次重大产品升级,推出了全新的 Hearth(炉边)算法。在新算法的加持下,每张照片都仿佛被注入生命,成为了一个个微型的、充满故事性和情感深度的电影短片。

图片

只需要上传一张照片,即可生成高度相关的人物和故事,包括分镜头、旁白、脚本…

在短视频盛行的时代,Hearth 算法就是为了重新点燃我们对这些“静态记忆”的热爱而设计的。它不仅使图像“说话”,分享它们背后的故事,以及承载的艺术、历史和个人记忆。这是一种从静态到动态,从视觉到听觉的革新。

📎 直接上手体验:scenex.jinaai.cn/a/community

哪些行业可以从 Hearth 算法中受益?

Hearth 算法具有广泛的应用前景,以下几个行业可能尤为受益,下面让我们感受几个实际应用案例:

更多维度的内容创作方式

内容创作者们用文字勾画世界,也总感觉少了点什么,如何让自己的内容独树一帜?有了 Hearth,你可以轻易地让故事加入背景音乐、声效甚至旁白,让读者不仅通过眼睛,也能通过耳朵听到你的世界。

截屏2023-09-01 15.34.20.png

用一张图生成完整的睡前故事音频

更具代入感的视频内容制作

利用 Hearth 算法,一张图片,就能即可创作出高度相关的分镜头和脚本,在前期制作中就融合视觉和音频元素,节省时间的同时,更加生动且更具代入感。

截屏2023-09-01 15.53.55.png

用一张图生成分镜头脚本的文案

互动性更强的营销与广告

在信息爆炸的环境,获取消费者注意力的时间窗口非常有限。Hearth 为品牌将普通的静态广告快速转化为具有深度和情感触触的视频内容,从而更有效地吸引和保留消费者。

截屏2023-09-01 15.33.28.png

用一张图为电影院做一个脑洞大开宣传视频

结合听觉视觉的教育讲述

想象一下,历史教育不再是一堆枯燥的年代和事件,而是一出时空穿越的大戏,Hearth 听觉和视觉的完美结合让每一节课都成为一次探险。

截屏2023-09-01 15.53.32.png

让平面教学插图更加生动

上面的故事不仅编织了一个曲折丰富的故事,还通过生动的人物对话将场景变得栩栩如生。每个人物都被赋予了鲜明的特征和语气,体现了从图像描述中获得的理解深度。

揭秘 Hearth 算法

看到这儿你可能好奇,Hearth 是如何实现这一切的。事实上,我们采用了一种融合 并行与顺序执行策略 的精密架构,以在优化计算性能的同时,生成高度精炼的故事。接下来,让我们将深入探讨该算法的工作机制:

图片

1. 场景理解:不仅看,更要懂

当输入一个图像后,该算法就会同时识别图像的主体和上下文,同时还会从视觉数据中提取潜在的情感和复杂的细节。这些并行的处理流程利用了先进的计算机视觉技术,与我们传统的理解方法相结合,以捕捉图像的本质和微妙之处。

python复制代码def scene_understanding(image_input):subjects_and_contexts = get_subject_and_object(image_input)emotions_and_details = detect_emotions_and_details(image_input)return subjects_and_contexts, emotions_and_details
2. 大型语言模型(LLM):故事的灵魂

场景理解完后,Hearth 算法会启用大型语言模型(LLM)来构建故事。它会根据从图像中提取的线索,定义故事的角色、环境,以及推导出场景的整体情感和动态。

python复制代码def llm_processing(subjects_and_contexts, emotions_and_details):characters_and_setting = derive_characters_and_setting(subjects_and_contexts)mood_and_dynamics = define_mood_and_dynamics(emotions_and_details)return characters_and_setting, mood_and_dynamics
3. 叙事构建:不仅要说,更要引人入胜

接着,算法会基于上述信息,编织出吸引人的故事和对话。这里会综合考虑角色、环境和情感,生成与所选故事类型匹配的情节和对话。

python复制代码def narrative_construction(characters_and_setting, mood_and_dynamics, genre):storyline = generate_storyline(characters_and_setting, mood_and_dynamics, genre)dialogues = create_dialogues(characters_and_setting, mood_and_dynamics, genre)return storyline, dialogues
4. 旁白情感渲染(SSML):听得见的情感

为了让故事更加立体,Hearth 算法会为旁白添加相应的情感色彩。这样,你不仅能“听到”故事,更能“感受”到它。

python复制代码def ssml_voiceover_embedding(storyline, dialogues):ssml_output = generate_emotional_ssml(storyline, dialogues)return ssml_output
5. 故事审查和音频生成:最后的检验

最后,我们对生成的故事进行审查,来确保其逻辑连贯性,并保证和原始场景的相关性。审核通过,文本内容将被发送到 Azure 的文本转语音服务,将文本转换为身临其境的音频体验。

python复制代码def audio_generation(ssml_output):reviewed_story = review_narrative(ssml_output)audio_output = azure_tts(reviewed_story)return audio_output

通过以上五个步骤,Hearth 算法成功地把一个简单的图像转变为一个充满情感、有声叙述的故事,同时保留了图像本身的信息和情感。

已知限制

和其他前沿技术一样,它也有一些挑战:

幻觉问题:有时,Hearth 算法会为图片创造出一些实际不存在的细节。比如在一幅风景画,算法却在其中添加了一个从未出现过的小人物。这主要是因为算法在学习过程中看过太多的数据,有时会“想象”出一些内容。不过,我们正在努力修正这一点。

速度问题:要达到很高的准确度,算法需要花费更多的时间。但是,为了让算法运行得更快,我们正在研究如何进行优化,这样它在“讲故事”的时候就不会那么慢了。

内容过于政治正确:我们的算法比较倾向于生成符合公众接受度的内容。如果你需要生成一个恐怖故事,那它可能会避免制作过于惊悚的内容。我们正在努力让它可以根据需求生成更多样的内容,采取更平衡的叙事方法。

作为多模态人工智能的领军者,我们的目标是打造功能强大、用户友好的应用。面对上面的挑战,我们有信心在团队和社区的支持下,逐步去解决好。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

资源分享

图片

大模型AGI学习包

图片

图片

资料目录

  1. 成长路线图&学习规划
  2. 配套视频教程
  3. 实战LLM
  4. 人工智能比赛资料
  5. AI人工智能必读书单
  6. 面试题合集

人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取

1.成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

对于从来没有接触过网络安全的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

图片

2.视频教程

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,其中一共有21个章节,每个章节都是当前板块的精华浓缩

图片

3.LLM

大家最喜欢也是最关心的LLM(大语言模型)

图片

人工智能\大模型入门学习大礼包》,可以扫描下方二维码免费领取

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/36854.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

有兄弟对这类区域比较感兴趣,也引起我的好奇,我提取出来给大家看看

要说这类地区,亚洲泰国排第二估计没人敢说第一吧,所以我就提取泰国的数据给大家看看! 如图:这些特殊服务地区主要集中在曼谷和芭提雅地区,芭提雅最多!看来管理还是不错的,限制在一定范围&#x…

便携应急气象站设备—实时监测和记录气象数据

TH-BQX10便携应急气象站设备是一种高度集成、轻便易携的气象观测系统。它采用新型一体化结构设计,能够快速安装和拆卸,适用于各种复杂环境。通过集成多种气象传感器,该设备能够实时监测和记录温度、湿度、风向、风速、降雨量、气压等多种气象…

AMEYA360:广和通发布LTE Cat.1 bis模组MC610-GL,赋能全球漫游追踪器

广和通LTE Cat.1 bis模组MC610-GL搭载展锐8910平台,覆盖全球主流LTE频段,下行峰值速率达10.3Mbps,上行速率达5.1Mbps,满足全球终端对4G速率连接的需求;同时支持LTE和GSM双模通信,便于用户灵活切换网络。在尺寸封装上&a…

开放式耳机怎么选?五大2024年口碑销量爆棚机型力荐!

作为一名数码测评up主,今天来测评市面上的开放式耳机。开放式耳机它的设计非常的新颖,不管是舒适的佩戴,还是可以边听音乐,边听到周围的声音,给人更加安全的听感体验。长时间佩戴,不仅舒适度进一步的提升&a…

【机器学习】高斯混合模型(Gaussian Mixture Models, GMM)深度解析

🌈个人主页: 鑫宝Code 🔥热门专栏: 闲话杂谈| 炫酷HTML | JavaScript基础 ​💫个人格言: "如无必要,勿增实体" 文章目录 高斯混合模型(Gaussian Mixture Models, GMM)深度解析引…

【uml期末复习】统一建模语言大纲

前言: 关于uml的期末复习的常考知识点,可能对你们有帮助😉 目录 第一部分 概念与基础 第一章 面向对象技术 第二章 统一软件过程 第三章 UML概述 第四章 用例图 第五章 类图 第六章 对象图 第七章 顺序图 第八章 协作图 第九章 状态…

Transformers 安装与基本使用

文章目录 Github文档推荐文章简介安装官方示例中文情感分析模型分词器 Tokenizer填充 Padding截断 Truncation google-t5/t5-small使用脚本进行训练Pytorch 机器翻译数据集下载数据集格式转换 Github https://github.com/huggingface/transformers 文档 https://huggingface…

Selenium时间控件的处理

我们经常在做web自动化测试过程中会遇到时间控件,那么对于时间控件如何处理,我们可以来分析下。 对于时间控件一般分为两种: 1、普通的时间控件 直接通过send_keys就可以解决 d.get("https://www.ctrip.com/?sid155952&alliancei…

自定义 vant 的 van-calendar 日历控件

最近在做 vue 微信公众号项目&#xff0c; 有个自定义日历控件展示的需求&#xff0c;经过查阅资料&#xff0c;最终实现了如图所示效果&#xff0c;这里做了总结&#xff0c;需要的小伙伴可以参考一下&#xff1a; HTML代码&#xff1a; <template><div class"…

I/O系统

1. I/O接口 接口可以看做两个系统或两个部件之间的交接部分&#xff0c;它既可以是两种硬设备之间的连接电路&#xff0c;也可以是两个软件之间的共同逻辑边界。 I/O接口通常是指主机与I/O设备之间设置的一个硬件电路及其相应的软件控制。 2. 程序查询方式 程序查询方式是一…

知乎正通过乱码来干扰必应/谷歌等爬虫,从而限制中文数据集被用于AI训练

有用户反馈称使用微软必应搜索和谷歌搜索发现存在不少知乎乱码内容&#xff0c;即搜索结果里知乎内容的标题和正文内容都可能是乱码的&#xff0c;但抓取的正文前面一些段落内容可以正常查看。考虑到此前知乎已经屏蔽除百度和搜狗以外的所有搜索引擎爬虫 (蜘蛛 / 机器人)&#…

酣客的“FFC模式”|白酒商业模式|分润制度顶层架构设计

酣客公社摒弃传统商业模式&#xff0c;提出“心联网”及“FFC模式”的商业模式。 坐标&#xff1a;厦门&#xff0c;我是肖琳 深耕社交新零售行业10年&#xff0c;主要提供新零售系统工具及顶层商业模式设计、全案策划运营陪跑等。 今天和大家分享“酣客”的营销模式&#xff…

检信智能推出我国首款Allemotion OS基于AI生理心理参数服务开发者平台

检信Allemotion OS生理心理开发者平台是根据世界人工智能高速发展的特点,为实现脑机交互的行业需求&#xff0c;由检信智能推出我国首款检信Allemotion OS生理心理开发者平台。检信Allemotion OS生理心理开发者平台集成了振动影像心理情绪20项情绪参数、11项生理相关参数&#…

知识图谱——Neo4j数据库实战

数据与代码链接见文末 1.Neo4j数据库安装 JDK 安装:https://www.oracle.com/java/technologies/javase-downloads.html Neo4j 安装:https://neo4j.com/download-center/ 配置好 JDK 和 Neo4j 的环境变量

2、Redis持久化与高可用架构

一、Redis 持久化 RDB 快照&#xff08;Snapshot&#xff09; 基本概念&#xff1a;RDB&#xff08;Redis DataBase&#xff09;快照是将 Redis 内存中的数据在某个时间点保存到磁盘中的一种持久化方式&#xff0c;默认保存到 dump.rdb 的二进制文件中。通过 RDB 快照&#xff…

C# 中的 StreamReader 和 StreamWriter 类

在这里插入代码片StreamReader 和 StreamWriter 位于 System.IO 命名空间中。当您想要读取或写入基于字符的数据时&#xff0c;这两个类都很有用。这两个类都处理 Unicode 字符。 StreamReader 派生自抽象类“TextReader”&#xff0c;StreamWriter 派生自“TextWriter”。 下…

springboot系列七: Lombok注解,Spring Initializr,yaml语法

老韩学生 LombokLombok介绍Lombok常用注解Lombok应用实例代码实现idea安装lombok插件 Spring InitializrSpring Initializr介绍Spring Initializr使用演示需求说明方式1: IDEA创建方式2: start.spring.io创建 注意事项和说明 yaml语法yaml介绍使用文档yaml基本语法数据类型字面…

Rethinking Semantic Segmentation: A Prototype View 2022CVPR Oral

流行的语义分割方案的掩码解码策略&#xff08;基于参数softmax或基于像素查询&#xff09;视为可学习的类原型。本研究揭示了这种参数分割策略的几个局限性&#xff0c;并提出了一种基于不可学习原型的非参数替代方案。与之前的方法以完全参数化的方式为每个类学习单个权重/查…

ubuntu22.04编译安装tesseract

1、 为什么用自己编译安装&#xff0c;而不采用apt安装&#xff1f; 由于tesseract有很多依赖包&#xff0c;直接用deb包或者rpm包等安装包安装很复杂&#xff0c;不一定能成功安装。 2、安装基本的依赖包 sudo apt update sudo apt install g autoconf automake libtool pkg…

Docker-Compose一键部署项目

Docker-Compose一键部署项目 目录 Docker-Compose一键部署项目介绍部署Django项目项目目录结构 docker-compose.ymlnginx的default.conf文件后端Dockerfile文件mysql.env一键部署DNS域名解析引起的跨域问题 介绍 Docker Compose 是一个用于定义和运行多容器 Docker 应用程序的…