Transformers 安装与基本使用

文章目录

  • Github
  • 文档
  • 推荐文章
  • 简介
  • 安装
  • 官方示例
  • 中文情感分析模型
    • 分词器 Tokenizer
    • 填充 Padding
    • 截断 Truncation
  • google-t5/t5-small
  • 使用脚本进行训练
    • Pytorch
  • 机器翻译
    • 数据集下载
    • 数据集格式转换

Github

  • https://github.com/huggingface/transformers

文档

  • https://huggingface.co/docs/transformers/index
  • https://github.com/huggingface/transformers/blob/main/i18n/README_zh-hans.md

推荐文章

  • http://jalammar.github.io/illustrated-transformer/

简介

Transformers是一种基于注意力机制(Attention Mechanism)的神经网络模型,广泛应用于自然语言处理(Natural Language Processing)任务中,如机器翻译、文本生成和文本分类等。

传统的序列模型(如循环神经网络)在处理长距离依赖时可能遇到困难,而Transformers通过引入注意力机制来解决这个问题。注意力机制使得模型能够在序列中对不同位置的信息进行加权关注,从而捕捉到全局的上下文信息。

在Transformers中,输入序列首先被分别编码为查询(Query)、键(Key)和值(Value)向量。通过计算查询与键的相似度,得到注意力分数,再将注意力分数与值相乘并加权求和,即可得到最终的上下文表示。这种自注意力机制允许模型在编码器和解码器中自由交换信息,从而更好地处理长距离依赖关系。

Transformer模型的核心组件是多层的自注意力机制和前馈神经网络。它的架构被广泛应用于许多重要的NLP任务,其中最著名的是BERT(Bidirectional Encoder Representations from Transformers),它在多项NLP任务上取得了突破性的性能。

除了NLP领域,Transformers模型也被应用于计算机视觉和其他领域,用于处理序列建模和生成任务。它已经成为深度学习中非常重要和有影响力的模型架构之一。

安装

pip install transformers
# PyTorch(推荐)
pip install 'transformers[torch]'
# TensorFlow 2.0
pip install 'transformers[tf-cpu]'
  • M1 / ARM 用户在安装 TensorFLow 2.0 之前,需要安装以下内容
brew install cmake
brew install pkg-config
  • 验证是否安装成功
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))"

在这里插入图片描述

注意: 以上验证操作需要“连网”,否则因无法下载文件而出现报错。

官方示例

from transformers import pipeline# 使用情绪分析流水线
classifier = pipeline('sentiment-analysis')
classifier('We are very happy to introduce pipeline to the transformers repository.')
  • 输出结果
[{'label': 'POSITIVE', 'score': 0.9996980428695679}]

在这里插入图片描述

中文情感分析模型

  • https://huggingface.co/IDEA-CCNL/Erlangshen-Roberta-110M-Sentiment

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

中文的RoBERTa-wwm-ext-base在数个情感分析任务微调后的版本

git clone https://huggingface.co/IDEA-CCNL/Erlangshen-Roberta-110M-Sentiment
from transformers import BertForSequenceClassification, BertTokenizer
import torch# 加载预训练模型和分词器
tokenizer = BertTokenizer.from_pretrained('Erlangshen-Roberta-110M-Sentiment')
model = BertForSequenceClassification.from_pretrained('Erlangshen-Roberta-110M-Sentiment')# 待分类的文本
text = '今天心情不好'# 对文本进行编码并转换为张量,然后输入模型中
input_ids = torch.tensor([tokenizer.encode(text)])
output = model(input_ids)# 对输出的logits进行softmax处理,得到分类概率
probabilities = torch.nn.functional.softmax(output.logits, dim=-1)# 打印输出分类概率
print(probabilities)
  • 输出
tensor([[0.9551, 0.0449]], grad_fn=<SoftmaxBackward0>)
from transformers import pipeline# 使用pipeline函数加载预训练的情感分析模型,并进行情感分析
classifier = pipeline("sentiment-analysis", model="Erlangshen-Roberta-110M-Sentiment")# 对输入文本进行情感分析
result = classifier("今天心情很好")# 打印输出结果
print(result)
  • 输出
[{'label': 'Positive', 'score': 0.9374911785125732}]
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline# 加载预训练模型和分词器
model_path = "Erlangshen-Roberta-110M-Sentiment"
model = AutoModelForSequenceClassification.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)# 创建情感分析的pipeline
classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)# 对文本进行情感分析
result = classifier("今天心情很好")
print(result)
  • 输出
[{'label': 'Positive', 'score': 0.9374911785125732}]

分词器 Tokenizer

from transformers import AutoTokenizer# 加载预训练模型的分词器
tokenizer = AutoTokenizer.from_pretrained("Erlangshen-Roberta-110M-Sentiment")# 对文本进行编码
encoded_input = tokenizer("今天心情很好")
print(encoded_input)# 解码已编码的输入,还原原始文本
decoded_input = tokenizer.decode(encoded_input["input_ids"])
print(decoded_input)
  • 输出
{'input_ids': [101, 791, 1921, 2552, 2658, 2523, 1962, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1]}
[CLS] 今 天 心 情 很 好 [SEP]

填充 Padding

模型的输入需要具有统一的形状(shape)。

from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("Erlangshen-Roberta-110M-Sentiment")batch_sentences = ["今天天气真好", "今天天气真好,适合出游"]
encoded_inputs = tokenizer(batch_sentences, padding=True)
print(encoded_inputs)
  • 输出
{'input_ids': [
[101, 791, 1921, 1921, 3698, 4696, 1962, 102, 0, 0, 0, 0, 0], 
[101, 791, 1921, 1921, 3698, 4696, 1962, 8024, 6844, 1394, 1139, 3952, 102]], 
'token_type_ids': [
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
], 
'attention_mask': [
[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0], 
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
]}

截断 Truncation

句子模型无法处理,可以将句子进行截断。

from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained("Erlangshen-Roberta-110M-Sentiment")batch_sentences = ["今天天气真好", "今天天气真好,适合出游"]
# return_tensors pt(PyTorch模型) tf(TensorFlow模型)
encoded_inputs = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt")
print(encoded_inputs)
  • 输出
{'input_ids': tensor([[ 101,  791, 1921, 1921, 3698, 4696, 1962,  102,    0,    0,   0,    0,    0],[ 101,  791, 1921, 1921, 3698, 4696, 1962, 8024, 6844, 1394, 1139, 3952, 102]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])
}

google-t5/t5-small

  • https://huggingface.co/google-t5/t5-small

在这里插入图片描述

Google的T5(Text-To-Text Transfer Transformer)是由Google Research开发的一种多功能的基于Transformer的模型。T5-small是T5模型的一个较小的变体,专为涉及自然语言理解和生成任务而设计。

  1. Transformer架构:与其它模型类似,T5-small采用了Transformer架构,该架构在各种自然语言处理(NLP)任务中表现出色。

  2. 多功能性:T5-small的设计理念是将所有的NLP任务都看作文本到文本的转换问题,使得模型可以通过简单地调整输入和输出来适应不同的任务。

  3. 预训练和微调:T5-small通常通过大规模的无监督预训练来学习通用的语言表示,然后通过有监督的微调来适应特定任务,如问答、摘要生成等。

  4. 应用广泛:由于其灵活性和性能,在各种NLP应用中都有广泛的应用,包括机器翻译、文本生成、情感分析等。

  • 下载 google-t5/t5-small 模型
# 模型大小 4.49G
git clone https://huggingface.co/google-t5/t5-small
  • 安装依赖库
pip install 'transformers[torch]'
pip install sentencepiece
  • 文本生成示例
from transformers import T5Tokenizer, T5ForConditionalGeneration# Step 1: 加载预训练的T5 tokenizer和模型
tokenizer = T5Tokenizer.from_pretrained("t5-small")
model = T5ForConditionalGeneration.from_pretrained("t5-small")while True:# Step 2: 接收用户输入input_text = input("请输入要生成摘要的文本 (输入 'exit' 结束): ")if input_text.lower() == 'exit':print("程序结束。")break# 使用tokenizer对输入文本进行编码input_ids = tokenizer(input_text, return_tensors="pt").input_ids# Step 3: 进行生成# 使用model.generate来生成文本output = model.generate(input_ids, max_length=50, num_beams=4, early_stopping=True)# Step 4: 解码输出output_text = tokenizer.decode(output[0], skip_special_tokens=True)# 打印输入和输出结果print("输入:", input_text)print("输出:", output_text)print("=" * 50)  # 分隔符,用来区分不同输入的输出结果

在这里插入图片描述

使用脚本进行训练

  • https://huggingface.co/docs/transformers/run_scripts

  • 从源代码安装 Transformers

git clone https://github.com/huggingface/transformers
cd transformers
pip install .
  • 将当前的 Transformers 克隆切换到特定版本
# 本地分支
git branch
# 远程分支
git branch -a
# 切换分支 v4.41.2,因为当前安装的版本是 v4.41.2
git checkout tags/v4.41.2
  • 安装依赖库
# 安装用于处理人类语言数据的工具集库
pip install nltk
# 安装用于计算ROUGE评估指标库
pip install rouge_score

Pytorch

示例脚本从 🤗 Datasets库下载并预处理数据集。然后,该脚本使用Trainer在支持摘要的架构上微调数据集。以下示例展示了如何在CNN/DailyMail数据集上微调T5-small。由于训练方式的原因,T5 模型需要额外的参数。此提示让 T5 知道这是一项摘要任务。

cd transformers/examples/pytorch/summarization
pip install -r requirements.txt
python run_summarization.py \--model_name_or_path google-t5/t5-small \--do_train \--do_eval \--dataset_name cnn_dailymail \--dataset_config "3.0.0" \--source_prefix "summarize: " \--output_dir /tmp/tst-summarization \--per_device_train_batch_size=4 \--per_device_eval_batch_size=4 \--overwrite_output_dir \--predict_with_generate

注意: 家用机上训练非常耗时,建议租用GPU服务器进行测试。

  • 数据缓存目录
# Linux/macOS
cd ~/.cache/huggingface
# Windows
C:\Users\{your_username}\.cache\huggingface
  • datasets
2.6G	cnn_dailymail
798M	downloads

机器翻译

数据集下载

  • https://huggingface.co/datasets/wmt/wmt16

在这里插入图片描述

数据集格式转换

pip install pandas
import pandas as pd
import jsonlines# 输入和输出文件路径
input_parquet_file = './input_file.parquet'
output_jsonl_file = './output_file.jsonl'# 加载 Parquet 文件
df = pd.read_parquet(input_parquet_file)# 将数据写入 JSONLines 文件
with jsonlines.open(output_jsonl_file, 'w') as writer:for index, row in df.iterrows():json_record = {"source_text": row['source_column'],  # 替换成实际的源语言列名"target_text": row['target_column']   # 替换成实际的目标语言列名}writer.write(json_record)
  • train.jsonl
{ "cs": "Následný postup na základě usnesení Parlamentu: viz zápis", "en": "Action taken on Parliament's resolutions: see Minutes" }
  • validation.jsonl
{ "en": "UN Chief Says There Is No Military Solution in Syria", "ro": "Șeful ONU declară că nu există soluții militare în Siria" }
cd examples/pytorch/translation
pip install -r requirements.txt
python run_translation.py \--model_name_or_path google-t5/t5-small \--do_train \--do_eval \--source_lang en \--target_lang ro \--source_prefix "translate English to Romanian: " \--dataset_name wmt16 \--dataset_config_name ro-en \--train_file ./train.jsonl \--validation_file ./validation.jsonl \--output_dir /tmp/tst-translation \--per_device_train_batch_size=4 \--per_device_eval_batch_size=4 \--overwrite_output_dir \--predict_with_generate

注意: 家用机上训练非常耗时,建议租用GPU服务器进行测试。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/36845.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Selenium时间控件的处理

我们经常在做web自动化测试过程中会遇到时间控件&#xff0c;那么对于时间控件如何处理&#xff0c;我们可以来分析下。 对于时间控件一般分为两种&#xff1a; 1、普通的时间控件 直接通过send_keys就可以解决 d.get("https://www.ctrip.com/?sid155952&alliancei…

自定义 vant 的 van-calendar 日历控件

最近在做 vue 微信公众号项目&#xff0c; 有个自定义日历控件展示的需求&#xff0c;经过查阅资料&#xff0c;最终实现了如图所示效果&#xff0c;这里做了总结&#xff0c;需要的小伙伴可以参考一下&#xff1a; HTML代码&#xff1a; <template><div class"…

I/O系统

1. I/O接口 接口可以看做两个系统或两个部件之间的交接部分&#xff0c;它既可以是两种硬设备之间的连接电路&#xff0c;也可以是两个软件之间的共同逻辑边界。 I/O接口通常是指主机与I/O设备之间设置的一个硬件电路及其相应的软件控制。 2. 程序查询方式 程序查询方式是一…

知乎正通过乱码来干扰必应/谷歌等爬虫,从而限制中文数据集被用于AI训练

有用户反馈称使用微软必应搜索和谷歌搜索发现存在不少知乎乱码内容&#xff0c;即搜索结果里知乎内容的标题和正文内容都可能是乱码的&#xff0c;但抓取的正文前面一些段落内容可以正常查看。考虑到此前知乎已经屏蔽除百度和搜狗以外的所有搜索引擎爬虫 (蜘蛛 / 机器人)&#…

酣客的“FFC模式”|白酒商业模式|分润制度顶层架构设计

酣客公社摒弃传统商业模式&#xff0c;提出“心联网”及“FFC模式”的商业模式。 坐标&#xff1a;厦门&#xff0c;我是肖琳 深耕社交新零售行业10年&#xff0c;主要提供新零售系统工具及顶层商业模式设计、全案策划运营陪跑等。 今天和大家分享“酣客”的营销模式&#xff…

检信智能推出我国首款Allemotion OS基于AI生理心理参数服务开发者平台

检信Allemotion OS生理心理开发者平台是根据世界人工智能高速发展的特点,为实现脑机交互的行业需求&#xff0c;由检信智能推出我国首款检信Allemotion OS生理心理开发者平台。检信Allemotion OS生理心理开发者平台集成了振动影像心理情绪20项情绪参数、11项生理相关参数&#…

知识图谱——Neo4j数据库实战

数据与代码链接见文末 1.Neo4j数据库安装 JDK 安装:https://www.oracle.com/java/technologies/javase-downloads.html Neo4j 安装:https://neo4j.com/download-center/ 配置好 JDK 和 Neo4j 的环境变量

2、Redis持久化与高可用架构

一、Redis 持久化 RDB 快照&#xff08;Snapshot&#xff09; 基本概念&#xff1a;RDB&#xff08;Redis DataBase&#xff09;快照是将 Redis 内存中的数据在某个时间点保存到磁盘中的一种持久化方式&#xff0c;默认保存到 dump.rdb 的二进制文件中。通过 RDB 快照&#xff…

C# 中的 StreamReader 和 StreamWriter 类

在这里插入代码片StreamReader 和 StreamWriter 位于 System.IO 命名空间中。当您想要读取或写入基于字符的数据时&#xff0c;这两个类都很有用。这两个类都处理 Unicode 字符。 StreamReader 派生自抽象类“TextReader”&#xff0c;StreamWriter 派生自“TextWriter”。 下…

springboot系列七: Lombok注解,Spring Initializr,yaml语法

老韩学生 LombokLombok介绍Lombok常用注解Lombok应用实例代码实现idea安装lombok插件 Spring InitializrSpring Initializr介绍Spring Initializr使用演示需求说明方式1: IDEA创建方式2: start.spring.io创建 注意事项和说明 yaml语法yaml介绍使用文档yaml基本语法数据类型字面…

Rethinking Semantic Segmentation: A Prototype View 2022CVPR Oral

流行的语义分割方案的掩码解码策略&#xff08;基于参数softmax或基于像素查询&#xff09;视为可学习的类原型。本研究揭示了这种参数分割策略的几个局限性&#xff0c;并提出了一种基于不可学习原型的非参数替代方案。与之前的方法以完全参数化的方式为每个类学习单个权重/查…

ubuntu22.04编译安装tesseract

1、 为什么用自己编译安装&#xff0c;而不采用apt安装&#xff1f; 由于tesseract有很多依赖包&#xff0c;直接用deb包或者rpm包等安装包安装很复杂&#xff0c;不一定能成功安装。 2、安装基本的依赖包 sudo apt update sudo apt install g autoconf automake libtool pkg…

Docker-Compose一键部署项目

Docker-Compose一键部署项目 目录 Docker-Compose一键部署项目介绍部署Django项目项目目录结构 docker-compose.ymlnginx的default.conf文件后端Dockerfile文件mysql.env一键部署DNS域名解析引起的跨域问题 介绍 Docker Compose 是一个用于定义和运行多容器 Docker 应用程序的…

新手向导:掌握Axure RP的第一步

其实很多时候&#xff0c;我们很容易把教程做得太复杂&#xff0c;让学生失去重点被复杂的理论吓到。入门基础的时候只需要先弄清楚两个核心内容&#xff0c;学起来就容易多了:一是简单了解这个软件&#xff0c;二是学习这个软件的基本操作。所以如果你问我什么是好的 Axure RP…

【QCustomPlot实战系列】QCPGraph折线图的渐变

包含折线图渐变效果以及QCPAxisTickerDateTime的使用 static QBrush GenerateLinearBrush(Qt::Orientation orientation) {qreal x 1;qreal y 0;if (orientation Qt::Vertical) {x0;y1.5;}QLinearGradient gradient(0, y, x, 0);gradient.setCoordinateMode(QLinearGradie…

软件需求管理规程(DOC原件)

软件需求管理规程是确保软件开发过程中需求清晰、一致、可追踪的关键环节&#xff1a; 明确需求&#xff1a;项目初期&#xff0c;与利益相关者明确项目目标和需求&#xff0c;确保需求完整、无歧义。需求评审&#xff1a;组织专家团队对需求进行评审&#xff0c;识别潜在风险和…

huggingface加速下载模型

文章目录 所需环境huggingface-cli 用法登录token 获取 huggingface 镜像huggingface 缓存hf-transfer 拉满下载带宽如果开了的话&#xff0c;记得关掉科学上网&#xff01;&#xff01;&#xff01; 所需环境 python huggingface-cli 用法 huggingface-cli的更多用法点击这…

基于SpringBoot+IDEA+Mysql开发的在线课程教育平台

基于SpringBootIDEAMysql开发的在线课程教育平台 项目介绍&#x1f481;&#x1f3fb; 项目背景描述 随着信息技术的迅猛发展和互联网的普及&#xff0c;传统教育模式正面临着前所未有的挑战和机遇。为满足广大用户对于灵活、便捷、高效学习方式的需求&#xff0c;我们决定开发…

Redis 内存碎片是什么?如何清理?

Redis 内存碎片相关的问题在得物、美团、阿里、字节、携程等公司的后端面试中都曾出现过&#xff0c;还是建议认真准备一下。即使不是准备面试&#xff0c;日常开发也是能够用到的&#xff01; 什么是内存碎片? 你可以将内存碎片简单地理解为那些不可用的空闲内存。 举个例子&…

PMP认证有什么好处?

一般这些人适合去考PMP认证&#xff1a; 想要通过资质进行晋升的人群&#xff1a; 比如说在项目相关的助理岗位&#xff0c;企业中的项目人才需求依旧是很大的&#xff0c;项目助理如果想要达到项目经理或者项目主管的提升&#xff0c;就需要让公司对自己的项目管理能力认同才…