AI应用开发相关目录
本专栏包括AI应用开发相关内容分享,包括不限于AI算法部署实施细节、AI应用后端分析服务相关概念及开发技巧、AI应用后端应用服务相关概念及开发技巧、AI应用前端实现路径及开发技巧
适用于具备一定算法及Python使用基础的人群
- AI应用开发流程概述
- Visual Studio Code及Remote Development插件远程开发
- git开源项目的一些问题及镜像解决办法
- python实现UDP报文通信
- python实现日志生成及定期清理
- Linux终端命令Screen常见用法
- python实现redis数据存储
- python字符串转字典
- python实现文本向量化及文本相似度计算
- python对MySQL数据的常见使用
- 一文总结python的异常数据处理示例
- 基于selenium和bs4的通用数据采集技术(附代码)
- 基于python的知识图谱技术
- 一文理清python学习路径
- Linux、Git、Docker常用指令
- linux和windows系统下的python环境迁移
- linux下python服务定时(自)启动
- windows下基于python语言的TTS开发
- python opencv实现图像分割
- python使用API实现word文档翻译
- yolo-world:”目标检测届大模型“
- 爬虫进阶:多线程爬虫
- python使用modbustcp协议与PLC进行简单通信
- ChatTTS:开源语音合成项目
- sqlite性能考量及使用(附可视化操作软件)
- 拓扑数据的关键点识别算法
- python脚本将视频抽帧为图像数据集
- 图文RAG组件:360LayoutAnalysis中文论文及研报图像分析
- Ubuntu服务器的GitLab部署
- 无痛接入图像生成风格迁移能力:GAN生成对抗网络
- 一文理清OCR的前世今生
- labelme使用笔记
文章目录
- AI应用开发相关目录
- 简介
- 部署
- 使用
简介
Labelme 是一个开源的数据标注工具,它能够帮助用户为图像、视频等数据添加标签,以供机器学习模型训练使用。Labelme 支持多种类型的标注,包括目标检测、分割、分类等任务,用户可以通过绘制矩形框、多边形、圆形等图形来标注对象,也可以进行像素级的分割标注。
Labelme 的特点包括:
跨平台:Labelme 支持多个操作系统,包括 Windows、macOS 和 Linux。
易于使用:它有一个直观的用户界面,方便用户进行标注工作。
灵活性:支持多种格式的输出,包括常见的 PASCAL VOC、COCO 等格式,方便与其他机器学习框架集成。
可扩展性:Labelme 支持插件,用户可以根据自己的需求定制或扩展功能。
社区支持:作为一个开源项目,Labelme 拥有活跃的社区,用户可以获取支持或分享经验。
Labelme 在学术界和工业界都有广泛的应用,特别是在计算机视觉领域。
部署
conda create -n labelme python=3.6
conda activate labelme
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple labelme
使用
如上图所示,在labelme指定虚拟环境下运行labelme指令。
可以选择Open打开一张图片对图片进行标注;
Open Dir选择图片保存的路径,即可标注多张图片。其中,保存ison到指定文件夹:File->Change Output Dir ->选择指定文件夹路径;
create polygons可以进行描边界点,通用还有矩形框等标注方式。
框住或标注图形后输入对应label即可。
注:
Ctrl+S:保存标注
D:下一张图片
S:上一张图片
一般的目标检测、分类等任务到此结束了,可以使用标注数据集进行算法模型训练。
但对于语义分割等任务还需根据标注生成语义图像。
cd 到指定存储生成的json文件的地址。
运行如下指令即可获得目标数据。
labelme_json_to_dataset <文件名>.json
json中包含png原图、yaml文件、png语义图像。
当然这只是一张图像而已,一张一张生成太麻烦,可通过如下代码批量生成:
# labelme版本:3.16.2
import os
import subprocess# JSON文件所在目录,一定要确保json文件与原图像在同一文件夹
json_dir = r"img2\labelme_jsons"# 遍历JSON文件
for json_file in os.listdir(json_dir):if json_file.endswith('.json'):# 构建labelme转换命令json_path = os.path.join(json_dir, json_file)cmd = 'labelme_json_to_dataset ' + json_path# 执行命令subprocess.run(cmd.split())