LangChain基础知识入门

LangChain的介绍和入门


在这里插入图片描述

1 什么是LangChain

在这里插入图片描述

LangChain由 Harrison Chase 创建于2022年10月,它是围绕LLMs(大语言模型)建立的一个框架,LLMs使用机器学习算法和海量数据来分析和理解自然语言,GPT3.5、GPT4是LLMs最先进的代表,国内百度的文心一言、阿里的通义千问也属于LLMs。LangChain自身并不开发LLMs,它的核心理念是为各种LLMs实现通用的接口,把LLMs相关的组件“链接”在一起,简化LLMs应用的开发难度,方便开发者快速地开发复杂的LLMs应用。LangChain目前有两个语言的实现:Python和Node.js


我们从两个方面全面介绍LangChain:一个是LangChain组件的基本概念和应用;另一个是LangChain常见的使用场景。


2 LangChain主要组件

在这里插入图片描述

一个LangChain的应用是需要多个组件共同实现的,LangChain主要支持6种组件:

  • Models:模型,各种类型的模型和模型集成,比如GPT-4
  • Prompts:提示,包括提示管理、提示优化和提示序列化
  • Memory:记忆,用来保存和模型交互时的上下文状态
  • Indexes:索引,用来结构化文档,以便和模型交互
  • Chains:链,一系列对各种组件的调用
  • Agents:代理,决定模型采取哪些行动,执行并且观察流程,直到完成为止

2.1 Models

现在市面上的模型多如牛毛,各种各样的模型不断出现,LangChain模型组件提供了与各种模型的集成,并为所有模型提供一个精简的统一接口。

LangChain目前支持三种类型的模型:LLMs、Chat Models(聊天模型)、Embeddings Models(嵌入模型).

  • LLMs: 大语言模型接收文本字符作为输入,返回的也是文本字符.

  • 聊天模型: 基于LLMs, 不同的是它接收聊天消(一种特定格式的数据)作为输入,返回的也是聊天消息.

  • 文本嵌入模型: 文本嵌入模型接收文本作为输入, 返回的是浮点数列表.

LangChain支持的三类模型,它们的使用场景不同,输入和输出不同,开发者需要根据项目需要选择相应。


2.1.1 LLMs (大语言模型)

LLMs使用场景最多,常用大模型的下载库:https://huggingface.co/models:

接下来我们以GPT模型为例, 使用该类模型的组件:

  • 第一步:安装必备的工具包:langchain和openai
pip install openai==0.28
pip install langchain

注意,在使用openai模型之前,必须开通OpenAI API服务,需要获得API Token。

  • 第二步:申请API Token
  • 第三部:代码实现
# 导入OpenAI模型
from langchain.llms import OpenAI
import os
os.environ["OPENAI_API_KEY"] = "你的OpenAI API token"
llm = OpenAI(model_name="text-davinci-003", n=2, temperature=0.3)
llm("给我讲一个笑话")
# 答案:一个猴子去河里洗澡,洗完后他看见自己的影子,他觉得自己太瘦了,于是他又把头放进河里洗了一遍!# 使用generate方法可以同时接收多个输入,并且返回token使用信息
llm.generate(["给我讲一个故事", "给我讲一个笑话"])
# 答案:# generations=[
#   [Generation(text='\n\n一个叫玛丽的小女孩,有一只叫毛毛的小猫。\n\n每天晚上,玛丽都会和毛毛一起玩耍,一起跳舞,一起唱歌,一起玩游戏。\n\n有一天,玛丽和毛毛一起去海边玩,突然,毛毛被一只海鸥抓走了。玛丽非常伤心,她跑到海边哭了起来,哭着喊着毛毛的', 
#       generation_info={'finish_reason': 'length', 'logprobs': None}),
#     Generation(text='\n\n一个叫小明的男孩,他很喜欢探险。有一天,他和他的朋友们一起去森林里玩,突然,他发现一个洞穴,他非常好奇,于是他决定去看看洞穴里面到底有什么。\n\n他走进洞穴,里面黑暗而又潮湿,他继续前行,突然,他看到一只大老虎,它正在吃一只小兔子。', 
#       generation_info={'finish_reason': 'length', 'logprobs': None})], 
#   [Generation(text='\n\n两个熊在森林里走,一个熊说:“嘿,你知道为什么树林里没有路吗?”另一个熊回答:“不知道,为什么?”第一个熊说:“因为它们都在绕树林跑!”', generation_info={'finish_reason': 'stop', 'logprobs': None}), Generation(text='\n\n两个熊在森林里拔萝卜,一个熊拔出一个萝卜,另一个熊说:“你拔的太慢了,我拔的快一点!”', 
#       generation_info={'finish_reason': 'stop', 'logprobs': None})]
2.1.2 Chat Models (聊天模型)

聊天消息包含下面几种类型,使用时需要按照约定传入合适的值:

  • AIMessage: 用来保存LLM的响应,以便在下次请求时把这些信息传回给LLM.
  • HumanMessage: 发送给LLMs的提示信息,比如“实现一个快速排序方法”.
  • SystemMessage: 设置LLM模型的行为方式和目标。你可以在这里给出具体的指示,比如“作为一个代码专家”,或者“返回json格式”.
  • ChatMessage: ChatMessage可以接收任意形式的值,但是在大多数时间,我们应该使用上面的三种类型.

LangChain支持的常见聊天模型有:

模型描述
ChatOpenAIOpenAI聊天模型
AzureChatOpenAIAzure提供的OpenAI聊天模型
PromptLayerChatOpenAI基于OpenAI的提示模版平台

举例说明:

from langchain.chat_models import ChatOpenAI
from langchain.schema import (AIMessage,HumanMessage,SystemMessage
)
import os
os.environ["OPENAI_API_KEY"] = "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"chat = ChatOpenAI(temperature=0)messages = [SystemMessage(content="返回json object,不要纯文本,按照每项参数拆分,不要说明和解释信息"),HumanMessage(content="告诉我model Y汽车的尺寸参数")
]print(chat(messages))
# 答案:# content='{\n "车长": "4,750 mm",\n "车宽": "1,921 mm",\n "车高": "1,624 mm",\n "轴距": "2,890 mm",\n "最小离地间隙": "162 mm",\n "行李箱容积": "1,900 L"\n}' additional_kwargs={} example=False
2.1.3 提示模板

在上面的例子中,模型默认是返回纯文本结果的,如果需要返回json格式,需要不断优化SystemMessage。那么有什么简单的方式快速让模型返回想要的数据呢?就是提示模版。

提示模板就是把一些常见的提示整理成模板,用户只需要修改模板中特定的词语,就能快速准确地告诉模型自己的需求。我们看个例子:

第一步:导入依赖

from langchain.chat_models import ChatOpenAI
from langchain.prompts import (ChatPromptTemplate,PromptTemplate,SystemMessagePromptTemplate,AIMessagePromptTemplate,HumanMessagePromptTemplate,
)
from langchain.schema import (AIMessage,HumanMessage,SystemMessage
)

第二步:实现提示模板:

system_template="你是一个把{input_language}翻译成{output_language}的助手"
system_message_prompt = SystemMessagePromptTemplate.from_template(system_template)
human_template="{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
messages = chat_prompt.format_prompt(input_language="英语", output_language="汉语", text="I love programming.")print(messages)
#messages=[SystemMessage(content='你是一个把英语翻译成汉语的助手', additional_kwargs={}), HumanMessage(content='I love programming.', additional_kwargs={}, example=False)]
chat = ChatOpenAI(temperature=0)print(chat(messages.to_messages()))# content='我喜欢编程。' additional_kwargs={} example=False
2.1.4 Embeddings Models(嵌入模型)

在这里插入图片描述

Embeddings Models特点:将字符串作为输入,返回一个浮动数的列表。在NLP中,Embedding的作用就是将数据进行文本向量化。

Embeddings Models可以为文本创建向量映射,这样就能在向量空间里去考虑文本,执行诸如语义搜索之类的操作,比如说寻找相似的文本片段。

接下来我们以一个OpenAI文本嵌入模型的例子进行说明:

from langchain.embeddings import OpenAIEmbeddings
open_embed = OpenAIEmbeddings()
text = "这是一个测试文档。"query_result = open_embed.embed_query(text)
doc_result = open_embed.embed_documents([text])print(query_result)
# [-0.009422866627573967, 0.004315766040235758, 0.002380653750151396,  ...]

上述代码中,我们分别使用了两种方法来进行文本的向量表示,他们最大不同在于:embed_query()接收一个字符串的输入,而embed_documents可以接收一组字符串。

LangChain集成的文本嵌入模型有:

  • AzureOpenAI、Cohere、Hugging Face Hub、OpenAI、Llama-cpp、SentenceTransformers

2.2 Prompts

Prompt是指当用户输入信息给模型时加入的提示,这个提示的形式可以是zero-shot或者few-shot等方式,目的是让模型理解更为复杂的业务场景以便更好的解决问题。

提示模板:如果你有了一个起作用的提示,你可能想把它作为一个模板用于解决其他问题,LangChain就提供了PromptTemplates组件,它可以帮助你更方便的构建提示。

zero-shot提示方式:

from langchain import PromptTemplate
from langchain.llms import OpenAItemplate = "我的邻居姓{lastname},他生了个儿子,给他儿子起个名字"prompt = PromptTemplate(input_variables=["lastname"],template=template,
)prompt_text = prompt.format(lastname="王")
# result: 我的邻居姓王,他生了个儿子,给他儿子起个名字# 调用OpenAI
llm = OpenAI(temperature=0.9)
print(llm(prompt_text))# 叫王爱慕。

few-shot提示方式:

from langchain import PromptTemplate, FewShotPromptTemplate
from langchain.llms import OpenAIexamples = [{"word": "开心", "antonym": "难过"},{"word": "高", "antonym": "矮"},
]example_template = """
单词: {word}
反义词: {antonym}\\n
"""example_prompt = PromptTemplate(input_variables=["word", "antonym"],template=example_template,
)few_shot_prompt = FewShotPromptTemplate(examples=examples,example_prompt=example_prompt,prefix="给出每个单词的反义词",suffix="单词: {input}\\n反义词:",input_variables=["input"],example_separator="\\n",
)prompt_text = few_shot_prompt.format(input="粗")
print(prompt_text)# 给出每个单词的反义词
# 单词: 开心
# 反义词: 难过# 单词: 高
# 反义词: 矮# 单词: 粗
# 反义词:# 调用OpenAI
llm = OpenAI(temperature=0.9)
print(llm(prompt_text))# 细

2.3 Chains(链)

在LangChain中,Chains描述了将LLM与其他组件结合起来完成一个应用程序的过程.

针对上一小节的提示模版例子,zero-shot里面,我们可以用链来连接提示模版组件和模型,进而可以实现代码的更改:

from langchain import PromptTemplate
from langchain.llms import OpenAI
from langchain.chains import LLMChain
# 定义模板
template = "我的邻居姓{lastname},他生了个儿子,给他儿子起个名字"prompt = PromptTemplate(input_variables=["lastname"],template=template,
)
llm = OpenAI(temperature=0.9)chain = LLMChain(llm = llm, prompt = prompt)
# 执行链
print(chain.run("王"))
# 可以叫王子,也可以叫小王或者小王子等。。

如果你想将第一个模型输出的结果,直接作为第二个模型的输入,还可以使用LangChain的SimpleSequentialChain, 代码如下:

from langchain import PromptTemplate
from langchain.llms import OpenAI
from langchain.chains import LLMChain, SimpleSequentialChain
# 创建第一条链
template = "我的邻居姓{lastname},他生了个儿子,给他儿子起个名字"first_prompt = PromptTemplate(input_variables=["lastname"],template=template,
)
llm = OpenAI(temperature=0.9)first_chain = LLMChain(llm = llm, prompt = first_prompt)# 创建第二条链
second_prompt = PromptTemplate(input_variables=["child_name"],template="邻居的儿子名字叫{child_name},给他起一个小名",
)second_chain = LLMChain(llm=llm, prompt=second_prompt)# 链接两条链 
overall_chain = SimpleSequentialChain(chains=[first_chain, second_chain], verbose=True)# 执行链,只需要传入第一个参数
catchphrase = overall_chain.run("王")

2.4 Agents (代理)

在 LangChain 中 Agents 的作用就是根据用户的需求,来访问一些第三方工具(比如:搜索引擎或者数据库),进而来解决相关需求问题。

为什么要借助第三方库?

  • 因为大模型虽然非常强大,但是也具备一定的局限性,比如不能回答实时信息、处理数学逻辑问题仍然非常的初级等等。因此,可以借助第三方工具来辅助大模型的应用。

几个重要的概念:

  • 代理:

    • 负责控制整段代码的逻辑和执行,代理暴露了一个接口,用来接收用户输入,并返回AgentAction或AgentFinish。
    • AgentAction决定使用哪个工具
    • AgentFinish意味着代理的工作完成了,返回给用户结果。
  • 工具:

    • 第三方服务的集成,比如谷歌、bing等等
  • 工具包:

    • 一些集成好了代理包,比如create_csv_agent 可以使用模型解读csv文件。

    • 模型解决csv文件示例:

    from langchain.agents import create_csv_agent
    from langchain.llms import OpenAI
    agent = create_csv_agent(OpenAI(temperature=0), 'data.csv', verbose=True)
    agent.run("一共有多少行数据?")
    
  • 代理执行器:

    • 负责迭代运行代理的循环,直到满足停止的标准。

现在我们实现一个使用代理的例子:假如我们在北京,想让大语言模型告诉我们明天穿什么衣服,由于大语言模型不知道明天的天气,我们借助于serpapi 来查询天气,并传递给模型,代码如下:

from langchain.agents import load_tools
from langchain.agents import initialize_agent
from langchain.agents import AgentType
from langchain.llms import OpenAIllm = OpenAI(temperature=0)
tools = load_tools(["serpapi"], llm=llm)
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)agent.run("明天在北京穿什么衣服合适?")

要注意的是,运行这个示例需要申请serpapi token,并且设置到环境变量SERPAPI_API_KEY ,然后安装依赖包google-search-results

LangChain支持的工具如下:

工具描述
Bing SearchBing搜索
Google SearchGoogle搜索
Google Serper API一个从google搜索提取数据的API
Python REPL执行python代码
Requests执行python代码

2.5 Memory

大模型本身不具备上下文的概念,它并不保存上次交互的内容,ChatGPT之所以能够和人正常沟通对话,因为它进行了一层封装,将历史记录回传给了模型。

因此 LangChain 也提供了Memory组件, Memory分为两种类型:短期记忆和长期记忆。短期记忆一般指单一会话时传递数据,长期记忆则是处理多个会话时获取和更新信息。

目前的Memory组件只需要考虑ChatMessageHistory。举例分析:

from langchain.memory import ChatMessageHistoryhistory = ChatMessageHistory()
history.add_user_message("在吗?")
history.add_ai_message("有什么事?")print(history.messages)# [HumanMessage(content='在吗?', additional_kwargs={}), AIMessage(content='有什么事?', additional_kwargs={})]

和OpenAI结合,直接使用ConversationChain

from langchain import ConversationChain
from langchain.llms import OpenAIllm = OpenAI(temperature=0)
conversation = ConversationChain(llm=llm, verbose=True)
conversation.predict(input="小明有1只猫")
conversation.predict(input="小刚有2只狗")
conversation.predict(input="小明和小刚一共有几只宠物?")

如果要像chatGPT一样,长期保存历史消息,,可以使用messages_to_dict 方法

from langchain.memory import ChatMessageHistory
from langchain.schema import messages_from_dict, messages_to_dicthistory = ChatMessageHistory()
history.add_user_message("hi!")
history.add_ai_message("whats up?")dicts = messages_to_dict(history.messages)print(dicts)
# [{'type': 'human', 'data': {'content': 'hi!', 'additional_kwargs': {}}},
# {'type': 'ai', 'data': {'content': 'whats up?', 'additional_kwargs': {}}}]
# 读取历史消息
new_messages = messages_from_dict(dicts)print(new_messages)
#[HumanMessage(content='hi!', additional_kwargs={}),
# AIMessage(content='whats up?', additional_kwargs={})]

2.6 Indexes (索引)

在这里插入图片描述

Indexes组件的目的是让LangChain具备处理文档处理的能力,包括:文档加载、检索等。注意,这里的文档不局限于txt、pdf等文本类内容,还涵盖email、区块链、视频等内容。

Indexes组件主要包含类型:

  • 文档加载器
  • 文本分割器
  • VectorStores
  • 检索器

2.6.1 文档加载器

文档加载器主要基于Unstructured 包,Unstructured 是一个python包,可以把各种类型的文件转换成文本。

文档加载器使用起来很简单,只需要引入相应的loader工具:

from langchain.document_loaders import TextLoader
loader = TextLoader('../state_of_the_union.txt', encoding='utf8')
documents = loader.load()

LangChain支持的文档加载器 (部分):

文档加载器描述
CSVCSV问价
JSON Files加载JSON文件
Jupyter Notebook加载notebook文件
Markdown加载markdown文件
Microsoft PowerPoint加载ppt文件
PDF加载pdf文件
Images加载图片
File Directory加载目录下所有文件
HTML网页
2.6.2 文档分割器

由于模型对输入的字符长度有限制,我们在碰到很长的文本时,需要把文本分割成多个小的文本片段。

文本分割最简单的方式是按照字符长度进行分割,但是这会带来很多问题,比如说如果文本是一段代码,一个函数被分割到两段之后就成了没有意义的字符,所以整体的原则是把语义相关的文本片段放在一起。

LangChain中最基本的文本分割器是CharacterTextSplitter ,它按照指定的分隔符(默认“\n\n”)进行分割,并且考虑文本片段的最大长度。我们看个例子:

from langchain.text_splitter import CharacterTextSplitter# 初始字符串
state_of_the_union = "..."text_splitter = CharacterTextSplitter(        separator = "\\n\\n",chunk_size = 1000,chunk_overlap  = 200,length_function = len,
)texts = text_splitter.create_documents([state_of_the_union])

除了CharacterTextSplitter分割器,LangChain还支持其他文档分割器 (部分):

文档加载器描述
LatexTextSplitter沿着Latex标题、标题、枚举等分割文本。
MarkdownTextSplitter沿着Markdown的标题、代码块或水平规则来分割文本。
TokenTextSplitter根据openAI的token数进行分割
PythonCodeTextSplitter沿着Python类和方法的定义分割文本。
2.6.3 VectorStores

VectorStores是一种特殊类型的数据库,它的作用是存储由嵌入创建的向量,提供相似查询等功能。我们使用其中一个Chroma 组件作为例子:

from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma# pku.txt内容:<https://www.pku.edu.cn/about.html>
with open('./pku.txt') as f:state_of_the_union = f.read()
text_splitter = CharacterTextSplitter(chunk_size=100, chunk_overlap=0)
texts = text_splitter.split_text(state_of_the_union)embeddings = OpenAIEmbeddings()docsearch = Chroma.from_texts(texts, embeddings)query = "1937年北京大学发生了什么?"
docs = docsearch.similarity_search(query)
print(docs)

LangChain支持的VectorStore如下:

VectorStore描述
Chroma一个开源嵌入式数据库
ElasticSearchElasticSearch
Milvus用于存储、索引和管理由深度神经网络和其他机器学习(ML)模型产生的大量嵌入向量的数据库
Redis基于redis的检索器
FAISSFacebook AI相似性搜索服务
Pinecone一个具有广泛功能的向量数据库
2.6.4 检索器

检索器是一种便于模型查询的存储数据的方式,LangChain约定检索器组件至少有一个方法get_relevant_texts,这个方法接收查询字符串,返回一组文档。

from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddingsloader = TextLoader('../../../state_of_the_union.txt')
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()db = FAISS.from_documents(texts, embeddings)
retriever = db.as_retriever()
docs = retriever.get_relevant_documents("what did he say about ketanji brown jackson")

LangChain支持的检索器组件如下:

检索器介绍
Azure Cognitive Search RetrieverAmazon ACS检索服务
ChatGPT Plugin RetrieverChatGPT检索插件
DataberryDataberry检索
ElasticSearch BM25ElasticSearch检索器
MetalMetal检索器
Pinecone Hybrid SearchPinecone检索服务
SVM RetrieverSVM检索器
TF-IDF RetrieverTF-IDF检索器
VectorStore RetrieverVectorStore检索器
Vespa retriever一个支持结构化文本和向量搜索的平台
Weaviate Hybrid Search一个开源的向量搜索引擎
Wikipedia支持wikipedia内容检索

3 LangChain使用场景

在这里插入图片描述

  • 个人助手
  • 基于文档的问答系统
  • 聊天机器人
  • Tabular数据查询
  • API交互
  • 信息提取
  • 文档总结

小结

主要对LangChain框架基础知识介绍,我们对LangChain有一个初步认识,了解LangChain的使用场景。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/25530.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【源码】Spring Data JPA原理解析之事务注册原理

Spring Data JPA系列 1、SpringBoot集成JPA及基本使用 2、Spring Data JPA Criteria查询、部分字段查询 3、Spring Data JPA数据批量插入、批量更新真的用对了吗 4、Spring Data JPA的一对一、LazyInitializationException异常、一对多、多对多操作 5、Spring Data JPA自定…

Docker 基础使用 (4) 网络管理

文章目录 Docker 网络管理需求Docker 网络架构认识Docker 常见网络类型1. bridge 网络2. host 网络3. container 网络4. none 网络5. overlay 网络 Docker 网路基础指令Docker 网络管理实操 其他相关链接 Docker 基础使用(0&#xff09;基础认识 Docker 基础使用(1&#xff09;…

文件操作(Python和C++版)

一、C版 程序运行时产生的数据都属于临时数据&#xff0c;程序—旦运行结束都会被释放通过文件可以将数据持久化 C中对文件操作需要包含头文件< fstream > 文件类型分为两种: 1. 文本文件 - 文件以文本的ASCII码形式存储在计算机中 2. 二进制文件- 文件以文本的二进…

Spring运维之boo项目表现层测试匹配响应执行状态响应体JSON和响应头

匹配响应执行状态 我们创建了测试环境 而且发送了虚拟的请求 我们接下来要进行验证 验证请求和预期值是否匹配 MVC结果匹配器 匹配上了 匹配失败 package com.example.demo;import org.junit.jupiter.api.Test; import org.springframework.beans.factory.annotation.Auto…

Transformer动画讲解:Softmax函数

暑期实习基本结束了&#xff0c;校招即将开启。 不同以往的是&#xff0c;当前职场环境已不再是那个双向奔赴时代了。求职者在变多&#xff0c;HC 在变少&#xff0c;岗位要求还更高了。提前准备才是完全之策。 最近&#xff0c;我们又陆续整理了很多大厂的面试题&#xff0c…

读AI未来进行式笔记07量子计算

1. AI审讯技术 1.1. 发明者最初的目的是发明一种能够替代精神药物&#xff0c;为人类带来终极快乐的技术 1.1.1. 遗憾的是&#xff0c;他找到的只是通往反方向的大门 1.2. 通过非侵入式的神经电磁干扰大脑边缘系统&#xff0c;诱发受审者最…

VRRP基础配置(华为)

#交换设备 VRRP基础配置 VRRP (Virtual Router Redundancy Protocol) 全称是虚拟路由规元余协议&#xff0c;它是一种容错协议。该协议通过把几台路由设备联合组成一台虚拟的路由设备&#xff0c;该虚拟路由器在本地局域网拥有唯一的一个虚拟 ID 和虚拟 IP 地址。实际上&…

UV胶的均匀性对产品质量有什么影响吗?

UV胶的均匀性对产品质量有什么影响吗? UV胶的均匀性对产品质量具有显著的影响&#xff0c;主要体现在以下几个方面&#xff1a; 粘合强度&#xff1a;UV胶的均匀性直接影响其粘合强度。如果UV胶分布不均匀&#xff0c;可能导致部分区域粘接力不足&#xff0c;从而影响产品的…

报错:CMake Error OpenCVConfig.cmake opencv-config.cmake

1、编译过程中&#xff0c;出现OpenCV 报错问题 报错&#xff1a;CMake Error OpenCVConfig.cmake opencv-config.cmake 解决思路&#xff1a;参考此链接

LangChain + ChatGLM 实现本地知识库问答

基于LangChain ChatGLM 搭建融合本地知识的问答机器人 1 背景介绍 近半年以来&#xff0c;随着ChatGPT的火爆&#xff0c;使得LLM成为研究和应用的热点&#xff0c;但是市面上大部分LLM都存在一个共同的问题&#xff1a;模型都是基于过去的经验数据进行训练完成&#xff0c;无…

Python进阶-部署Flask项目(以TensorFlow图像识别项目WSGI方式启动为例)

本文详细介绍了如何通过WSGI方式部署一个基于TensorFlow图像识别的Flask项目。首先简要介绍了Flask框架的基本概念及其特点&#xff0c;其次详细阐述了Flask项目的部署流程&#xff0c;涵盖了服务器环境配置、Flask应用的创建与测试、WSGI服务器的安装与配置等内容。本文旨在帮…

JAVA-LeetCode 热题 100 第56.合并区间

思路&#xff1a; class Solution {public int[][] merge(int[][] intervals) {if(intervals.length < 1) return intervals;List<int[]> res new ArrayList<>();Arrays.sort(intervals, (o1,o2) -> o1[0] - o2[0]);for(int[] interval : intervals){if(res…

【嵌入式】波特率9600,发送8个字节需要多少时间,如何计算?

问题&#xff1a; 波特率9600&#xff0c;发送 01 03 00 00 00 04 44 09 (8字节) 需要多少时间&#xff0c;如何计算&#xff1f; 在计算发送数据的时间时&#xff0c;首先要考虑波特率以及每个字符的数据格式。对于波特率9600和标准的UART数据格式&#xff08;1个起始位&…

AIRNet模型使用与代码分析(All-In-One Image Restoration Network)

AIRNet提出了一种较为简易的pipeline&#xff0c;以单一网络结构应对多种任务需求&#xff08;不同类型&#xff0c;不同程度&#xff09;。但在效果上看&#xff0c;ALL-In-One是不如One-By-One的&#xff0c;且本文方法的亮点是batch内选择patch进行对比学习。在与sota对比上…

JAVA-学习-2

一、类 1、类的定义 把相似的对象划分了一个类。 类指的就是一种模板&#xff0c;定义了一种特定类型的所有对象的属性和行为 在一个.java的问题件中&#xff0c;可以有多个class&#xff0c;但是智能有一个class是用public的class。被声明的public的class&#xff0c;必须和文…

Pytorch 实现目标检测一(Pytorch 23)

一 目标检测和边界框 在图像分类任务中&#xff0c;我们假设图像中只有一个主要物体对象&#xff0c;我们只关注如何识别其类别。然而&#xff0c;很多时候图像里有多个我们感兴趣的目标&#xff0c;我们不仅想知 道它们的类别&#xff0c;还想得到它们在图像中的具体位置。在…

【前端】响应式布局笔记——自适应布局

自适应布局 自适应布局是不同设备对应不同的html(局部自适应)&#xff0c;通过判断设备的类型或控制局部的变化。 1、获取设备是移动端还是pc端 // 获取设备的信息let userAgent navigator.userAgent.toLowerCase();// 使用正则表达式来判断类型let device /ipad|iphone|m…

数据并非都是正态分布:三种常见的统计分布及其应用

你有没有过这样的经历&#xff1f;使用一款减肥app&#xff0c;通过它的图表来监控自己的体重变化&#xff0c;并预测何时能达到理想体重。这款app预测我需要八年时间才能恢复到大学时的体重&#xff0c;这种不切实际的预测是因为应用使用了简单的线性模型来进行体重预测。这个…

服务部署:.NET项目使用Docker构建镜像与部署

前提条件 安装Docker&#xff1a;确保你的Linux系统上已经安装了Docker。如果没有&#xff0c;请参考官方文档进行安装。 步骤一&#xff1a;准备项目文件 将你的.NET项目从Windows系统复制到Linux系统。你可以使用Git、SCP等工具来完成这个操作。如何是使用virtualbox虚拟电…

国产操作系统上给virtualbox中win7虚拟机安装增强工具 _ 统信 _ 麒麟 _ 中科方德

原文链接&#xff1a;国产操作系统上给virtualbox中win7虚拟机安装增强工具 | 统信 | 麒麟 | 中科方德 Hello&#xff0c;大家好啊&#xff01;今天给大家带来一篇在国产操作系统上给win7虚拟机安装virtualbox增强工具的文章。VirtualBox增强工具&#xff08;Guest Additions&a…