Pytorch 实现目标检测一(Pytorch 23)

一 目标检测和边界框

在图像分类任务中,我们假设图像中只有一个主要物体对象,我们只关注如何识别其类别。然而,很多时候图像里有多个我们感兴趣的目标,我们不仅想知 道它们的类别,还想得到它们在图像中的具体位置。在计算机视觉里,我们将这类任务称为 目标检测(object detection)或目标识别(object recognition)。

目标检测在多个领域中被广泛使用。例如,在无人驾驶里,我们需要通过识别拍摄到的视频图像里的车辆、行 人、道路和障碍物的位置 来规划行进线路。机器人也常通过该任务来检测感兴趣的目标。安防领域则需要检测异常目标,如歹徒或者炸弹。

接下来的几节将介绍几种用于目标检测的深度学习方法。我们将首先介绍目标的位置。

%matplotlib inline
import torch
from d2l import torch as d2l

下面加载本节将使用的示例图像。可以看到图像左边是一只狗,右边是一只猫。它们是这张图像里的两个主要目标。

d2l.set_figsize()
img = d2l.plt.imread('../img/catdog.jpg')
d2l.plt.imshow(img)

1.1 边界框

在目标检测中,我们通常使用 边界框(bounding box)来描述对象的空间位置。边界框是矩形的,由矩形左上角的以及右下角的x和y坐标决定。另一种常用的边界框表示方法是边界框中心的(x, y)轴坐标以及框的宽 度和高度。 在这里,我们定义在这两种表示法之间进行转换的函数:box_corner_to_center从两角表示法转换为中心宽度表示法,而box_center_to_corner反之亦然。输入参数boxes可以是长度为4的张量,也可以是形状为(n, 4)的二维张量,其中 n是边界框的数量

#@save
def box_corner_to_center(boxes):x1, y1, x2, y2 = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]cx = (x1 + x2) / 2cy = (y1 + y2) / 2w = x2 - x1h = y2 - y1boxes = torch.stack((cx, cy, w, h), axis=-1)return boxes#@save
def box_center_to_corner(boxes):cx, cy, w, h = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]x1 = cx - 0.5 * wy1 = cy - 0.5 * hx2 = cx - 0.5 * wy2 = cy - 0.5 * hboxes = torch.stack((x1, y1, x2, y2), axis=-1)return boxes

我们将根据坐标信息定义图像中狗和猫的边界框。图像中坐标的原点是图像的左上角,向右的方向为x轴的 正方向,向下的方向为y轴的正方向。

dog_bbox, cat_bbox = [60.0, 45.0, 378.0, 516.0], [400.0, 112.0, 655.0, 493.0]

我们可以通过转换两次来验证边界框转换函数的正确性。

boxes = torch.tensor((dog_bbox, cat_bbox))
box_center_to_corner(box_corner_to_center(boxes)) == boxes

我们可以 将边界框在图中画出,以检查其是否准确。画之前,我们定义一个辅助函数bbox_to_rect。它将边 界框表示成matplotlib的边界框格式。

#@save
def bbox_to_rect(bbox, color):return d2l.plt.Rectangle(xy=(bbox[0], bbox[1]), width=bbox[2] - bbox[0], height=bbox[3]-bbox[1],fill=False, edgecolor=color, linewidth=2)
fig = d2l.plt.imshow(img)
fig.axes.add_patch(bbox_to_rect(dog_bbox, 'blue'))
fig.axes.add_patch(bbox_to_rect(cat_bbox, 'red'))

小结:

  • 目标检测不仅可以识别图像中所有感兴趣的物体,还能识别它们的位置,该位置通常由矩形边界框表示
  • 我们可以在两种常用的边界框表示(中间,宽度,高度)和(左上,右下)坐标之间进行转换。

1.2 锚框

目标检测算法通常会在输入图像中采样大量的区域,然后判断这些区域中是否包含我们感兴趣的目标,并调整区域边界从而更准确地预测目标的真实边界框(ground‐truth bounding box)。不同的模型使用的区域采样方法可能不同。这里我们介绍其中的一种方法:以每个像素为中心,生成多个缩放比和宽高比(aspect ratio) 不同的边界框。这些边界框被称为锚框(anchor box)我们将设计一个基于锚框的目标检测模型。

首先,让我们修改输出精度,以获得更简洁的输出。

1.2.1 生成多个锚框

假设输入图像的高度为h,宽度为w。我们以图像的每个像素为中心生成不同形状的锚框:缩放比为s ∈ (0, 1], 宽高比为r > 0。那么锚框的宽度和高度分别是hs√ r和hs/ √ r。请注意,当中心位置给定时,已知宽和高的锚框是确定的

#@save
def multibox_prior(data, sizes, ratios):in_height, in_width = data.shape[-2:]device, num_sizes, num_ratios = data.device, len(sizes), len(ratios)boxes_per_pixel = (num_sizes + num_ratios - 1)size_tensor = torch.tensor(sizes, device=device)ratio_tensor = torch.tensor(ratios, device=device)offset_h, offset_w = 0.5, 0.5steps_h = 1.0 / in_heightsteps_w = 1.0 / in_widthcenter_h = (torch.arange(in_height, device=device) + offset_h) * steps_hcenter_w = (torch.arange(in_width, device=device) + offset_w) * steps_wshift_y, shift_x = torch.meshgrid(center_h, center_w, indexing='ij')shift_y, shift_x = shift_y.reshape(-1), shift_x.reshape(-1)w = torch.cat((size_tensor * torch.sqrt(ratio_tensor[0]),sizes[0] * torch.sqrt(ratio_tensor[1:]))) * in_height / in_widthh = torch.cat((size_tensor / torch.sqrt(ratio_tensor[0]),sizes[0] / torch.sqrt(ratio_tensor[1:])))anchor_manipulations = torch.stack((-w, -h, w, h)).T.repeat(in_height * in_width, 1) / 2out_grid = torch.stack([shift_x, shift_y, shift_x, shift_y], dim=1).repeat_interleave(boxes_per_pixel, dim=0)output = out_grid + anchor_manipulationsreturn output.unsqueeze(0)

可以看到返回的锚框变量Y的形状是(批量大小,锚框的数量,4)。

img = d2l.plt.imread('../img/catdog.jpg')
h, w = img.shape[:2]
print(h, w)
X = torch.rand(size=(1, 3, h, w))
Y = multibox_prior(X, sizes=[0.75, 0.5, 0.25], ratios=[1, 2, 0.5])
Y.shape

将锚框变量Y的形状更改为(图像高度,图像宽度,以同一像素为中心的锚框的数量,4)后,我们可以获得以指定像素的位置为中心的所有锚框。在接下来的内容中,我们访问以(250,250)为中心的第一个锚框。它有四个元素:锚框左上角的(x, y)轴坐标和右下角的(x, y)轴坐标。输出中两个轴的坐标各分别除以了图像的宽度和 高度。

boxes = Y.reshape(h, w, 5, 4)
boxes[250, 250, 0, :]
# tensor([0.1805, 0.3208, 0.6023, 1.0708])

为了显示以图像中以某个像素为中心的所有锚框,定义下面的show_bboxes函数来在图像上 绘制多个边界框

#@save
def show_bboxes(axes, bboxes, labels=None, colors=None):def _make_list(obj, default_values=None):if obj is None:obj = default_valueselif not isinstance(obj, (list, tuple)):obj = [obj]return objlabels = _make_list(labels)colors = _make_list(colors, ['b', 'g', 'r', 'm', 'c'])for i, bbox in enumerate(bboxes):color = colors[i % len(colors)]rect = d2l.bbox_to_rect(bbox.detach().numpy(), color)axes.add_patch(rect)if labels and len(labels) > i:text_color = 'k' if color == 'w' else 'w'axes.text(rect.xy[0], rect.xy[1], labels[i],va='center', ha='center', fontsize=9, color=text_color,bbox=dict(facecolor=color, lw=0))

正如从上面代码中所看到的,变量boxes中x轴和y轴的坐标值已分别除以图像的宽度和高度。绘制锚框时,我们需要恢复它们原始的坐标值。因此,在下面定义了变量bbox_scale。现在可以绘制出图像中所有以(250,250)为 中心的锚框了。如下所示,缩放比为0.75且宽高比为1的蓝色锚框很好地围绕着图像中的狗。

d2l.set_figsize()
bbox_scale = torch.tensor((w, h, w, h))
fig = d2l.plt.imshow(img)
show_bboxes(fig.axes, boxes[250, 250, :, :] * bbox_scale,['s=0.75, r=1', 's=0.5, r=1', 's=0.25, r=1', 's=0.75, r=2','s=0.75, r=0.5'])

1.2.2 交并比(IoU)

我们刚刚提到某个锚框“较好地”覆盖了图像中的狗。如果已知目标的真实边界框,那么这里的“好”该如 何如何量化呢?直观地说,可以衡量锚框和真实边界框之间的相似性。杰卡德系数(Jaccard)可以衡量两组 之间的相似性。杰卡德系数(Jaccard)可以衡量两组 之间的相似性。给定集合A和B,他们的杰卡德系数是他们 交集的大小除以他们并集 的大小:

事实上,我们可以将任何边界框的像素区域视为一组像素。通过这种方式,我们可以通过其像素集的杰卡德系数来测量两个边界框的相似性。对于两个边界框,它们的杰卡德系数通常称为交并比(intersection over union,IoU),即两个边界框相交面积与相并面积之比。交并比的 取值范围在0和1之间0表 示两个边界框无重合像素,1表示两个边界框完全重合

接下来部分将使用交并比来衡量锚框和真实边界框之间、以及不同锚框之间的相似度。给定两个锚框或边界框的列表,以下 box_iou函数将在这两个列表中计算它们成对的交并比

#@save
def box_iou(boxes1, boxes2):box_area = lambda boxes: ((boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]))areas1 = box_area(boxes1)areas2 = box_area(boxes2)inter_upperlefts = torch.max(boxes1[:, None, :2], boxes2[:, :2])inter_lowerrights = torch.min(boxes1[:, None, 2:], boxes2[:, 2:])inters = (inter_lowerrights - inter_upperlefts).clamp(min=0)inter_areas = inters[:, :, 0] * inters[:, :, 1]union_areas = areas[: None] + areas2 - inter_areasreturn inter_areas / union_areas

 1.2.3 在训练数据中标注锚框

在训练集中,我们将每个锚框视为一个训练样本。为了训练目标检测模型,我们需要每个锚框的类别(class) 和偏移量(offset)标签,其中前者是与锚框相关的对象的类别,后者是真实边界框相对于锚框的偏移量。在 预测时,我们为每个图像生成多个锚框,预测所有锚框的类别和偏移量,根据预测的偏移量调整它们的位置 以获得预测的边界框,最后只输出符合特定条件的预测边界框。

将真实边界框分配给锚框,给定图像,假设锚框 是A1, A2, . . . , Ana,真实边界框 是B1, B2, . . . , Bnb,其中na ≥ nb。让我们定义一个矩 阵X ∈ R na×nb,其中第i行、第j列的元素xij是锚框Ai和真实边界框Bj的IoU。该算法包含以下步骤。

  1. 在矩阵X中找到最大的元素,并将它的行索引和列索引分别表示为i1和j1。然后将真实边界框Bj1分配给 锚框Ai1。这很直观,因为Ai1和Bj1是所有锚框和真实边界框配对中最相近的。在第一个分配完成后,丢弃矩阵中i1 th行和j1 th列中的所有元素
  2. 在矩阵X中找到剩余元素中最大的元素,并将它的行索引和列索引分别表示为i2和j2。我们将真实边界 框Bj2分配给锚框Ai2,并丢弃矩阵中i2 th行和j2 th列中的所有元素。
  3. 此时,矩阵X中两行和两列中的元素已被丢弃。我们继续,直到丢弃掉矩阵X中nb列中的所有元素。此时已经为这nb个锚框各自分配了一个真实边界框。
  4. 只遍历剩下的na − nb个锚框。例如,给定任何锚框Ai,在矩阵X的第i th行中找到与Ai的IoU最大的真实边界框Bj,只有当此IoU大于预定义的阈值时,才将Bj分配给Ai

下面用一个具体的例子来说明上述算法。如下图(左)所示,假设矩阵X中的最大值为x23,我们将真实边界框B3分配给锚框A2。然后,我们丢弃矩阵第2行和第3列中的所有元素,在剩余元素(阴影区域)中找到 最大的x71,然后将真实边界框B1分配给锚框A7。接下来,如 下图(中)所示,丢弃矩阵第7行和第1列 中的所有元素,在剩余元素(阴影区域)中找到最大的x54,然后将真实边界框B4分配给锚框A5。最后,如 下图(右)所示,丢弃矩阵第5行和第4列中的所有元素,在剩余元素(阴影区域)中找到最大的x92,然 后将真实边界框B2分配给锚框A9。之后,我们只需要遍历剩余的锚框A1, A3, A4, A6, A8,然后根据阈值确定是否为它们分配真实边界框

此算法在下面的assign_anchor_to_bbox函数中实现。

#@save
def assign_anchor_to_bbox(ground_truth, anchors, device, iou_threshold=0.5):num_anchors, num_gt_boxes = anchors.shape[0], ground_truth.shape[0]jaccard = box_iou(anchors, ground_truth)anchors_bbox_map = torch.full((num_anchors,), -1, dtype=torch.long,device=device)max_ious, indices = torch.max(jaccard, dim=1)anc_i = torch.nonzero(max_ious >= iou_threshold).reshape(-1)box_j = indices[max_ious >= iou_threshold]anchors_bbox_map[anc_i] = box_jcol_discard = torch.full((num_anchors,), -1)row_discard = torch.full((num_anchors,), -1)for _ in range(num_gt_boxes):max_idx = torch.argmax(jaccard)box_idx = (max_idx % num_gt_boxes).long()anx_idx = (max_idx / num_gt_boxes).long()anchors_bbox_map[anc_idx] = box_idxjaccard[:, box_idx] = col_discardjaccard[anc_idx, :] = row_discardreturn anchors_bbox_map

1.2.4 标记类别和偏移量

现在我们可以为每个锚框 标记类别和偏移量了。假设一个锚框A被分配了一个真实边界框B。一方面,锚 框A的类别将被标记为与B相同。另一方面,锚框A的偏移量将根据B和A中心坐标的相对位置以及这两个 框的相对大小进行标记。鉴于数据集内不同的框的位置和大小不同,我们可以对那些相对位置和大小应用 变换,使其获得分布更均匀且易于拟合的偏移量。这里介绍一种常见的变换。给定框A和B,中心坐标分别 为(xa, ya)和(xb, yb),宽度分别为wa和wb,高度分别为ha和hb,可以将A的偏移量标记为:

#@save
def offset_boxes(anchors, assigned_bb, eps=1e-6):c_anc = d2l.box_corner_to_center(anchors)c_assigned_bb = d2l.box_corner_to_center(assigned_bb)offset_xy = 10 * (c_assigned_bb[:, :2] - c_anc[:, :2]) / c_anc[:, 2:]offset_wh = 5 * torch.log(eps + c_assigned_bb[:, 2:] / c_anc[:, 2:])offset = torch.cat([offset_xy, offset_wh], axis=1)return offset

如果一个锚框没有被分配真实边界框,我们只需将锚框的类别标记为背景(background)。背景类别的锚框通常被称为负类锚框,其余的被称为正类锚框。我们使用真实边界框(labels参数)实现以下multibox_target函 数,来标记锚框的类别和偏移量(anchors参数)。此函数将背景类别的索引设置为零,然后将新类别的整数索引递增一。

#@save
def multibox_target(anchors, labels):batch_size, anchors =labels.shape[0], anchors.squeeze(0)batch_offset, batch_mask, batch_class_labels = [], [], []device, num_anchors = anchors.device, anchors.shape[0]for i in range(batch_size):label = labels[i, :, :]anchors_bbox_map = assign_anchor_to_bbox(label[:, 1:], anchors, device)bbox_mask = ((anchors_bbox_map >= 0).float().unsqueeze(-1)).repeat(1, 4)class_labels = torch.zeros(num_anchors, dtype=torch.long, device=device)assigned_bb = torch.zeros((num_anchors, 4), dtype=torch.float32, device=device)indices_true = torch.nonzero(anchors_bbox_map >= 0)bb_idx = anchors_bbox_map[indices_true]class_labels[indices_true] = label[bb_idx, 0].long() + 1assigned_bb[indices_true] = label[bb_idx, 1:]offset = offset_boxes(anchors, assigned_bb) * bbox_maskbatch_offset.append(offset.reshape(-1))batch_class_labels.append(class_labels)bbox_offset = torch.stack(batch_offset)bbox_mask = torch.stack(batch_mask)class_labels = torch.stack(batch_class_labels)return (bbox_offset, bbox_mask, class_labels)

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/25510.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【前端】响应式布局笔记——自适应布局

自适应布局 自适应布局是不同设备对应不同的html(局部自适应),通过判断设备的类型或控制局部的变化。 1、获取设备是移动端还是pc端 // 获取设备的信息let userAgent navigator.userAgent.toLowerCase();// 使用正则表达式来判断类型let device /ipad|iphone|m…

华为od-C卷100分题目 - 10寻找最富裕的小家庭

华为od-C卷100分题目 - 10寻找最富裕的小家庭 题目描述 在一棵树中,每个节点代表一个家庭成员,节点的数字表示其个人的财富值,一个节点及其直接相连的子节点被定义为一个小家庭。 现给你一棵树,请计算出最富裕的小家庭的财富和。…

数据并非都是正态分布:三种常见的统计分布及其应用

你有没有过这样的经历?使用一款减肥app,通过它的图表来监控自己的体重变化,并预测何时能达到理想体重。这款app预测我需要八年时间才能恢复到大学时的体重,这种不切实际的预测是因为应用使用了简单的线性模型来进行体重预测。这个…

服务部署:.NET项目使用Docker构建镜像与部署

前提条件 安装Docker:确保你的Linux系统上已经安装了Docker。如果没有,请参考官方文档进行安装。 步骤一:准备项目文件 将你的.NET项目从Windows系统复制到Linux系统。你可以使用Git、SCP等工具来完成这个操作。如何是使用virtualbox虚拟电…

IQueryable 常用方法

IQueryable IQueryable 接口是用于构建查询的,它的方法不会直接操作数据库。相反,它会构建查询表达式,并在执行时将这些表达式转换为适当的 SQL 查询,然后发送到数据库执行。 常用方法 where 根据指定的条件过滤查询结果&am…

@Autowired 和 @Resource区别,简单测试容器中多个相同bean的情况

Autowired 和 Resource 区别 Autowired 来自Spring, Resource 来自java;Autowired 默认按类型注入,容器中存在多个相同类型的 Bean,将抛出异常。 可以配合使用 Qualifier 指定名称。 两个相同类型(都 implements For…

国产操作系统上给virtualbox中win7虚拟机安装增强工具 _ 统信 _ 麒麟 _ 中科方德

原文链接:国产操作系统上给virtualbox中win7虚拟机安装增强工具 | 统信 | 麒麟 | 中科方德 Hello,大家好啊!今天给大家带来一篇在国产操作系统上给win7虚拟机安装virtualbox增强工具的文章。VirtualBox增强工具(Guest Additions&a…

Liunx环境下redis主从集群搭建(保姆级教学)02

Redis在linux下的主从集群配置 本次演示使用三个节点实例一个主节点,两个从节点:7000端口(主),7001端口(从),7002端口(从); 主节点负责写数据&a…

Rust-02-变量与可变性

在Rust中,变量和可变性是两个重要的概念。 变量:变量是用于存储数据的标识符。在Rust中,变量需要声明其类型,例如: let x: i32 5; // 声明一个名为x的变量,类型为i32(整数)&#…

mybatis增加日志打印插件

可以在分页插件PageHelperAutoConfiguration注入的时候,注入日志打印插件 public void afterPropertiesSet() {PageInterceptor interceptor new PageInterceptor(this.helperProperties);interceptor.setProperties(this.helperProperties.getProperties());for …

安装MySQL Sample Database

本文安装的示例数据库为官方的Employees Sample Database。 操作过程参考其安装部分。 在安装前,MySQL已安装完成,环境为Linux。 克隆github项目: $ git clone https://github.com/datacharmer/test_db.git Cloning into test_db... remo…

华为和锐捷设备流统配置

华为&#xff1a; <AR6121E-S>dis acl 3333 Advanced ACL 3333, 4 rules Acls step is 5 rule 5 permit icmp source 192.168.188.2 0 destination 192.168.88.88 0 rule 10 permit icmp source 192.168.88.88 0 destination 192.168.188.2 0 rule 15 permit udp so…

【西瓜书】6.支持向量机

目录&#xff1a; 1.分类问题SVM 1.1.线性可分 1.2.非线性可分——核函数 2.回归问题SVR 3.软间隔——松弛变量 3.1.分类问题&#xff1a;0/1损失函数、hinge损失、指数损失、对率损失 3.2.回归问题&#xff1a;不敏感损失函数、平方 4.正则化

计算机组成原理之指令格式

1、指令的定义 零地址指令&#xff1a; 1、不需要操作数&#xff0c;如空操作、停机、关中断等指令。 2、堆栈计算机&#xff0c;两个操作数隐藏在栈顶和此栈顶&#xff0c;取两个操作数&#xff0c;并运算的结果后重新压回栈顶。 一地址指令&#xff1a; 二、三地址指令 四…

配置免密登录秘钥报错

移除秘钥&#xff0c;执行 ssh-keygen -R cdh2即可 参考&#xff1a;ECDSA主机密钥已更改,您已请求严格检查。 - 简书

nocas配置加载失败解决-笔记

nacos配置加载失败问题-笔记 背景解决过程解决方案 各位遇到的问题不尽相同&#xff0c;本文只记录 自己 遇到的问题并及如何解决 背景 最近接手的一个微服务架构项目&#xff0c;同事搭建的框架&#xff0c;按照配置一步一步搬运到nacos上&#xff0c;本地启动测试通过&…

记录一个Qt调用插件的问题

问题背景 使用Qt主程序插件的方式开发&#xff0c;即主程序做成一个框&#xff0c;定义好插件接口&#xff0c;然后主程序上通过插件接口与插件进行交互。调试过程中遇到了两个问题&#xff0c;在这里记录一下。 问题1&#xff08;信号槽定义&#xff09; 插件与主程序之间&am…

python 做成Excel并设置打印区域

记录首次用python处理Excel表格的过程。 参考文章&#xff1a;https://www.jianshu.com/p/5e00dc2c9f4c 程序要做的事情&#xff1a; 1. copy 模板文件到 output 文件夹并重命名为客户指定的文件名 2. 从 DB 查询数据并将数据写入 Excel 3. 写数据的同时&#xff0c; 设置每…

Python爬虫入门与登录验证自动化思路

1、pytyon爬虫 1.1、爬虫简介 Python爬虫是使用Python编写的程序&#xff0c;可以自动访问网页并提取其中的信息。爬虫可以模拟浏览器的行为&#xff0c;自动点击链接、填写表单、进行登录等操作&#xff0c;从而获取网页中的数据。 使用Python编写爬虫的好处是&#xff0c;…

【数据结构】十二、八种常用的排序算法讲解及代码分享

目录 一、插入排序 1)算法思想 2&#xff09;代码 二、希尔排序 1&#xff09;算法思想 2&#xff09;代码 三、选择排序 1&#xff09;算法思想 2&#xff09;代码 四、堆排序 1&#xff09;什么是最大堆 2&#xff09;如何创建最大堆 3&#xff09;算法思想 4&a…