Transformer动画讲解:Softmax函数

暑期实习基本结束了,校招即将开启。

不同以往的是,当前职场环境已不再是那个双向奔赴时代了。求职者在变多,HC 在变少,岗位要求还更高了。提前准备才是完全之策。

最近,我们又陆续整理了很多大厂的面试题,帮助一些球友解惑答疑,分享技术面试中的那些弯弯绕绕。

总结链接如下:

  • 《大模型面试宝典》(2024版) 正式发布!

Transformer的Softmax函数:用于将原始注意力分数转换为输入标记的概率分布。这种分布将较高的注意力权重分配给更相关的标记,并将较低的权重分配给不太相关的标记。Transformers通过Softmax在生成输出时,使用注意力机制来权衡不同输入标记的重要性。

图片

Softmax的数学原理:对于一个给定的实数向量,它首先计算每一个元素的指数(e的幂),然后每个元素的指数与所有元素指数总和的比值,就形成了softmax函数的输出。这种计算方式不仅使输出值落在0到1之间,还保证了所有输出值的总和为1。

图片

Softmax在Transformer的位置:

在Transformer模型中,Softmax函数主要在两个关键位置被使用:

  1. 自注意力机制(Self-Attention Mechanism):

    (1)自注意力机制是Transformer模型中的核心组件之一,它允许模型处理输入序列中的依赖关系,而不需要考虑序列中元素的顺序。

    (2)在自注意力机制中,模型首先计算输入序列中每个位置(token)与其他所有位置的的相似度分数(也称为注意力分数)。这些分数通常通过点积、缩放点积或其他相似度函数计算得到。

    (3)使用Softmax函数对这些相似度分数进行归一化,生成一个权重分布,该分布表示了在计算当前位置(query)的表示时,应赋予其他位置(keys)多大的关注程度。

    (4)这些权重最终被用来计算加权和,生成当前位置的上下文向量,该向量将作为该位置在后续层中的输入。

  2. 输出层(Output Layer):

    (1)在Transformer的解码器部分,输出层负责根据解码器的状态生成目标序列。

    (2)当进行词汇预测或生成任务时(如机器翻译中的下一个词预测),解码器的最后一层通常会产生一个未经归一化的分数向量(logits),其中每个元素对应于词汇表中一个词的概率。

    (3)Softmax函数被应用于这个分数向量,将其转换为概率分布,其中每个元素表示生成对应词汇的概率。这使得模型可以生成一个分布,并从中选择最可能的词作为预测结果。

图片

Softmax在Transformer的作用:

  • 归一化:Softmax函数将原始分数转换为概率分布,确保所有概率之和为1,使得输出结果可以解释为概率。

  • 平滑化:通过指数函数,Softmax能够将大的分数差距转换为相对平滑的概率分布,从而避免了“赢家通吃”的情况,即一个分数远大于其他分数时,其他分数几乎被忽略。

  • 可解释性:输出的概率分布使得模型预测结果更加直观和可解释,我们可以直接查看模型为每个可能输出分配的概率。

  • 稳定性:在训练过程中,Softmax有助于保持梯度的稳定性,因为概率分布的变化通常比原始分数更加平滑。

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/25525.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

读AI未来进行式笔记07量子计算

1. AI审讯技术 1.1. 发明者最初的目的是发明一种能够替代精神药物,为人类带来终极快乐的技术 1.1.1. 遗憾的是,他找到的只是通往反方向的大门 1.2. 通过非侵入式的神经电磁干扰大脑边缘系统,诱发受审者最…

VRRP基础配置(华为)

#交换设备 VRRP基础配置 VRRP (Virtual Router Redundancy Protocol) 全称是虚拟路由规元余协议,它是一种容错协议。该协议通过把几台路由设备联合组成一台虚拟的路由设备,该虚拟路由器在本地局域网拥有唯一的一个虚拟 ID 和虚拟 IP 地址。实际上&…

UV胶的均匀性对产品质量有什么影响吗?

UV胶的均匀性对产品质量有什么影响吗? UV胶的均匀性对产品质量具有显著的影响,主要体现在以下几个方面: 粘合强度:UV胶的均匀性直接影响其粘合强度。如果UV胶分布不均匀,可能导致部分区域粘接力不足,从而影响产品的…

报错:CMake Error OpenCVConfig.cmake opencv-config.cmake

1、编译过程中,出现OpenCV 报错问题 报错:CMake Error OpenCVConfig.cmake opencv-config.cmake 解决思路:参考此链接

LangChain + ChatGLM 实现本地知识库问答

基于LangChain ChatGLM 搭建融合本地知识的问答机器人 1 背景介绍 近半年以来,随着ChatGPT的火爆,使得LLM成为研究和应用的热点,但是市面上大部分LLM都存在一个共同的问题:模型都是基于过去的经验数据进行训练完成,无…

Python进阶-部署Flask项目(以TensorFlow图像识别项目WSGI方式启动为例)

本文详细介绍了如何通过WSGI方式部署一个基于TensorFlow图像识别的Flask项目。首先简要介绍了Flask框架的基本概念及其特点,其次详细阐述了Flask项目的部署流程,涵盖了服务器环境配置、Flask应用的创建与测试、WSGI服务器的安装与配置等内容。本文旨在帮…

JAVA-LeetCode 热题 100 第56.合并区间

思路&#xff1a; class Solution {public int[][] merge(int[][] intervals) {if(intervals.length < 1) return intervals;List<int[]> res new ArrayList<>();Arrays.sort(intervals, (o1,o2) -> o1[0] - o2[0]);for(int[] interval : intervals){if(res…

【嵌入式】波特率9600,发送8个字节需要多少时间,如何计算?

问题&#xff1a; 波特率9600&#xff0c;发送 01 03 00 00 00 04 44 09 (8字节) 需要多少时间&#xff0c;如何计算&#xff1f; 在计算发送数据的时间时&#xff0c;首先要考虑波特率以及每个字符的数据格式。对于波特率9600和标准的UART数据格式&#xff08;1个起始位&…

AIRNet模型使用与代码分析(All-In-One Image Restoration Network)

AIRNet提出了一种较为简易的pipeline&#xff0c;以单一网络结构应对多种任务需求&#xff08;不同类型&#xff0c;不同程度&#xff09;。但在效果上看&#xff0c;ALL-In-One是不如One-By-One的&#xff0c;且本文方法的亮点是batch内选择patch进行对比学习。在与sota对比上…

JAVA-学习-2

一、类 1、类的定义 把相似的对象划分了一个类。 类指的就是一种模板&#xff0c;定义了一种特定类型的所有对象的属性和行为 在一个.java的问题件中&#xff0c;可以有多个class&#xff0c;但是智能有一个class是用public的class。被声明的public的class&#xff0c;必须和文…

Pytorch 实现目标检测一(Pytorch 23)

一 目标检测和边界框 在图像分类任务中&#xff0c;我们假设图像中只有一个主要物体对象&#xff0c;我们只关注如何识别其类别。然而&#xff0c;很多时候图像里有多个我们感兴趣的目标&#xff0c;我们不仅想知 道它们的类别&#xff0c;还想得到它们在图像中的具体位置。在…

【前端】响应式布局笔记——自适应布局

自适应布局 自适应布局是不同设备对应不同的html(局部自适应)&#xff0c;通过判断设备的类型或控制局部的变化。 1、获取设备是移动端还是pc端 // 获取设备的信息let userAgent navigator.userAgent.toLowerCase();// 使用正则表达式来判断类型let device /ipad|iphone|m…

数据并非都是正态分布:三种常见的统计分布及其应用

你有没有过这样的经历&#xff1f;使用一款减肥app&#xff0c;通过它的图表来监控自己的体重变化&#xff0c;并预测何时能达到理想体重。这款app预测我需要八年时间才能恢复到大学时的体重&#xff0c;这种不切实际的预测是因为应用使用了简单的线性模型来进行体重预测。这个…

服务部署:.NET项目使用Docker构建镜像与部署

前提条件 安装Docker&#xff1a;确保你的Linux系统上已经安装了Docker。如果没有&#xff0c;请参考官方文档进行安装。 步骤一&#xff1a;准备项目文件 将你的.NET项目从Windows系统复制到Linux系统。你可以使用Git、SCP等工具来完成这个操作。如何是使用virtualbox虚拟电…

国产操作系统上给virtualbox中win7虚拟机安装增强工具 _ 统信 _ 麒麟 _ 中科方德

原文链接&#xff1a;国产操作系统上给virtualbox中win7虚拟机安装增强工具 | 统信 | 麒麟 | 中科方德 Hello&#xff0c;大家好啊&#xff01;今天给大家带来一篇在国产操作系统上给win7虚拟机安装virtualbox增强工具的文章。VirtualBox增强工具&#xff08;Guest Additions&a…

Liunx环境下redis主从集群搭建(保姆级教学)02

Redis在linux下的主从集群配置 本次演示使用三个节点实例一个主节点&#xff0c;两个从节点&#xff1a;7000端口&#xff08;主&#xff09;&#xff0c;7001端口&#xff08;从&#xff09;&#xff0c;7002端口&#xff08;从&#xff09;&#xff1b; 主节点负责写数据&a…

Rust-02-变量与可变性

在Rust中&#xff0c;变量和可变性是两个重要的概念。 变量&#xff1a;变量是用于存储数据的标识符。在Rust中&#xff0c;变量需要声明其类型&#xff0c;例如&#xff1a; let x: i32 5; // 声明一个名为x的变量&#xff0c;类型为i32&#xff08;整数&#xff09;&#…

安装MySQL Sample Database

本文安装的示例数据库为官方的Employees Sample Database。 操作过程参考其安装部分。 在安装前&#xff0c;MySQL已安装完成&#xff0c;环境为Linux。 克隆github项目&#xff1a; $ git clone https://github.com/datacharmer/test_db.git Cloning into test_db... remo…

【西瓜书】6.支持向量机

目录&#xff1a; 1.分类问题SVM 1.1.线性可分 1.2.非线性可分——核函数 2.回归问题SVR 3.软间隔——松弛变量 3.1.分类问题&#xff1a;0/1损失函数、hinge损失、指数损失、对率损失 3.2.回归问题&#xff1a;不敏感损失函数、平方 4.正则化

计算机组成原理之指令格式

1、指令的定义 零地址指令&#xff1a; 1、不需要操作数&#xff0c;如空操作、停机、关中断等指令。 2、堆栈计算机&#xff0c;两个操作数隐藏在栈顶和此栈顶&#xff0c;取两个操作数&#xff0c;并运算的结果后重新压回栈顶。 一地址指令&#xff1a; 二、三地址指令 四…