大模型高级 RAG 检索策略之混合检索

古人云:兼听则明,偏信则暗,意思是要同时听取各方面的意见,才能正确认识事物,只相信单方面的话,必然会犯片面性的错误。

在 RAG(Retrieval Augmented Generation)应用中也是如此,如果我们可以同时从多个信息源中获取信息,那么我们的检索结果会更加全面和准确。今天我们就来介绍高级 RAG 检索策略中的混合检索,并在实际操作中结合 ElaticSearch 和 Llama3 来实现混合检索的效果。

原理介绍

混合检索也叫融合检索,也叫多路召回,是指在检索过程中,同时使用多种检索方式,然后将多种检索结果进行融合,得到最终的检索结果。混合检索的优势在于可以充分利用多种检索方式的优势,弥补各种检索方式的不足,从而提高检索的准确性和效率,下面是混合检索的流程图:

图片

  • 首先是问题查询,这一过程的设计可以简单也可以复杂,简单的做法是直接将原始查询传递给检索器,而复杂一点的做法是通过 LLM(大语言模型)为原始查询生成子查询或相似查询,然后再将生成后的查询传递给检索器

  • 然后是检索器执行检索,检索可以在同一数据源上进行不同维度的检索,比如向量检索和关键字检索,也可以是在不同数据源上进行检索,比如文档和数据库

  • 检索过程从原来一个问题变成了多个问题检索,如果串行执行这些检索,那么检索的效率会大大降低,所以我们需要并行执行多个检索,这样才可以保证检索的效率

  • 最后是融合检索结果,在这一过程中,我们需要对检索结果进行去重,因为在检索的多个结果中,有些结果可能是重复的,同时我们还需要对检索结果进行排序,排序方法一般采用 RRF(倒数排名融合),选出最匹配的检索结果

节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

技术交流

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了算法岗面试与技术交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:技术交流
方式②、添加微信号:mlc2040,备注:技术交流+CSDN

环境准备

为了更好地了解混合检索的原理和实现,今天我们将通过 LLM 应用框架LlamaIndex[1],结合 Meta 最新开源的模型Llama3[2]和开源搜索引擎ElasticSearch[3],来实现一个高效的混合检索系统。在 RAG 检索过程中除了需要用到 LLM 的模型外,还需要用到 Embedding 模型和 Rerank 模型,这些模型我们也统一使用本地部署的模型,这样可以更好地了解各种模型的使用和部署。

LlamaIndex 集成 Llama3

首先是进行 Llama3 的本地化部署,有多种工具可以部署 Llama3,比如 Ollama[4] 或 vllm[5],而且这些工具都提供了兼容 OpenAI 的 API 接口,vllm 的部署方式可以参考我之前的文章

部署完成后,我们再看如何在 LlamaIndex 中集成 Llama3。虽然 LlamaIndex 提供了自定义 LLM[7]的功能,但继承自CustomeLLM类来实现自定义 LLM 的方式比较复杂,需要从头实现completechat等方法。这里推荐 LlamaInex 另外一个创建自定义 LLM 的方法,即使用OpenAILike类,这个类是对 OpenAI 类进行轻量级封装,只要有兼容 OpenAI 的 API 服务,就可以直接使用该类来获得 OpenAI LLM 的功能。

要使用OpenAILike类,首先需要安装相关依赖包pip install llama-index-llms-openai-like,然后使用以下代码进行集成:

from llama_index.llms.openai_like import OpenAILike
from llama_index.core.base.llms.types import ChatMessage, MessageRole
from llama_index.core import PromptTemplatellm = OpenAILike(model="llama3",api_base="you-local-llama3-api",api_key="fake_key",is_chat_model=True,
)
prompt_str = "Please generate related movies to {movie_name}"
prompt_tmpl = PromptTemplate(prompt_str)
response = llm.chat([ChatMessage(role=MessageRole.SYSTEM,content="You are a helpful assistant.",),ChatMessage(role=MessageRole.USER,content=prompt_tmpl.format(movie_name="Avengers"),),]
)
print(f"response: {response}")# 显示结果
response: assistant: Here are some movie recommendations that are similar to the Avengers franchise:1. **Guardians of the Galaxy** (2014) - Another Marvel superhero team-up film, with a fun and quirky tone.
2. **The Justice League** (2017) - A DC Comics adaptation featuring iconic superheroes like Superman, Batman, Wonder Woman, and more.
......
  • OpenAILike对象中,参数model为模型名称,api_base为本地 Llama3 的 API 服务地址

  • api_key可以随便填写,但不能不传这个参数,否则会出现连接超时的错误

  • is_chat_model为是否是 chat 模型,因为 OpenAI 的模型分为 chat 模型和非 chat 模型

  • 然后我们使用 LLM 对象进行了一个普通的对话,结果可以正常返回

LlamaIndex 集成 ElasticSearch

在 RAG 应用中向量数据库是必不可少的一项功能,而 Elasticsearch 能够存储各种类型的数据,包括结构化和非结构化数据,并且支持全文检索和向量检索。

部署完 ElasticSearch 后,还需要安装 LlamaIndex 的 Elasticsearch 依赖包pip install llama-index-vector-stores-elasticsearch,然后使用以下代码示例就可以集成 ElasticSearch:

from llama_index.vector_stores.elasticsearch import ElasticsearchStorees = ElasticsearchStore(index_name="my_index",es_url="http://localhost:9200",
)
  • index_name 是 ElasticSearch 的索引名称,es_url 是 ElasticSearch 服务的地址

自定义 Embedding 和 Rerank 模型

在高级 RAG 的检索过程中,需要用到 Embedding 模型来对文档和问题进行向量化,然后使用 Rerank 模型对检索结果进行重排序。同样有很多工具可以部署这 2 种模型,比如TEI[9] 和 Xinference[10]等。

Embedding 模型的启动命令如下,这里我们使用了BAAI/bge-base-en-v1.5[12]这个 Embeddings 模型,服务端口为 6006:

text-embeddings-router --model-id BAAI/bge-base-en-v1.5 --revision refs/pr/4 --port 6006

Rerank 模型的启动命令如下,这里我们使用了BAAI/bge-reranker-base[13]这个 Rerank 模型,服务端口为 7007:

text-embeddings-router --model-id BAAI/bge-reranker-base --revision refs/pr/4 --port 7007

多种检索方式

数据入库

在介绍检索之前,我们先来了解下 LlamaIndex 如何使用 ElasticSearch 对文档进行解析和入库,这里的测试文档还是用维基百科上的复仇者联盟[14]电影剧情,示例代码如下:

from llama_index.vector_stores.elasticsearch import ElasticsearchStore
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, StorageContext
from llama_index.core.node_parser import SentenceSplitter
from llms import CustomEmbeddingsstore = ElasticsearchStore(index_name="avengers",es_url="http://localhost:9200",
)
documents = SimpleDirectoryReader("./data").load_data()
node_parser = SentenceSplitter(chunk_size=256, chunk_overlap=50)
storage_context = StorageContext.from_defaults(vector_store=store)
embed_model = CustomEmbeddings(model="BAAI/bge-base-en-v1.5", url="http://localhost:6006"
)
VectorStoreIndex.from_documents(documents,transformations=[node_parser],embed_model=embed_model,storage_context=storage_context,
)
  • 首先定义了一个 ElasticsearchStore 对象来连接 ElaticSearch 本地服务

  • 然后使用 SimpleDirectoryReader 加载本地的文档数据

  • 使用 SentenceSplitter 对文档进行分块处理,应为 TEI 的输入 Token 数最大只能 512,所以这里的 chunk_size 设置为 256,chunk_overlap 设置为 50

  • 构建 StorageContext 对象,指定向量存储为之前定义的 ElasticsearchStore 对象

  • 创建一个自定义 Embeddings 对象,使用的是 TEI 部署的 Embeddings 模型服务,

  • 最后使用 VectorStoreIndex 对象将文档数据入库

当执行完代码后,可以在 ElasticSearch 的avengers索引中看到文档数据,如下图所示:

图片

全文检索

数据入库后,我们再来看下如何在 LlamaIndex 中使用 Elasticsearch 进行全文检索。

全文检索是 Elasticsearch 的基本功能,有时候也叫关键字检索,是指根据关键字在文档中进行检索,支持精确匹配,同时高级功能也支持模糊匹配、同义词替换、近义词搜索等。在 LlamaIndex 中使用 Elasticsearch 进行全文检索的代码如下:

from llama_index.vector_stores.elasticsearch import AsyncBM25Strategy
from llama_index.core import Settingstext_store = ElasticsearchStore(index_name="avengers",es_url="http://localhost:9200",retrieval_strategy=AsyncBM25Strategy(),
)
Settings.embed_model = embed_model
text_index = VectorStoreIndex.from_vector_store(vector_store=text_store,
)
text_retriever = text_index.as_retriever(similarity_top_k=2)
  • 这里重新定义了一个 ElasticsearchStore 对象,但这次指定了检索策略为 BM25,如果要使用全文检索则必须指定这个检索策略

  • ElasticsearchStore对象作为参数来创建VectorStoreIndex 对象

  • 最后通过VectorStoreIndex对象创建全文检索的检索器,这里设置检索结果的数量为 2

BM25 是一种在信息检索领域广泛采用的排名函数,主要用于评估文档与用户查询的相关性。该算法的基本原理是将用户查询(query)分解为若干语素(qi),然后计算每个语素与搜索结果之间(document D)的相关性。通过累加这些相关性得分,BM25 最终得出查询与特定文档之间的总相关性评分。这种检索策略在现代搜索引擎中非常常见。

向量检索

我们再来了解 LlamaIndex 中如何使用 Elasticsearch 进行向量检索。

向量检索是一种基于机器学习的信息检索技术,它使用数学向量来表示文档和查询。在 LlamaIndex 中使用 Elasticsearch 进行向量检索有 2 种检索策略,分别是DenseSparse,这两种策略的区别在于向量的稠密度,Dense检索的号码每一位都是有用的数字,就像一个充满数字的电话号码,而Sparse检索的号码大部分都是零,只有少数几个位置有数字,就像一个电话号码大部分是零,只有几个位置有数字。如果需要更精细、更复杂的检索方法,用Dense检索,如果需要简单快速的方法,用Sparse检索。ElasicsearchStore类默认的检索策略是Dense,下面是向量检索的代码示例:

from llama_index.vector_stores.elasticsearch import AsyncDenseVectorStrategy, AsyncSparseVectorStrategyvector_store = ElasticsearchStore(index_name="avengers",es_url="http://localhost:9200",retrieval_strategy=AsyncDenseVectorStrategy(),# retrieval_strategy=AsyncSparseVectorStrategy(model_id=".elser_model_2"),
)
Settings.embed_model = embed_model
vector_index = VectorStoreIndex.from_vector_store(vector_store=vector_store,
)
vector_retriever = vector_index.as_retriever(similarity_top_k=2)
  • 向量检索的代码和全文检索的代码类似

  • 如果是使用Dense检索策略,可以指定retrieval_strategy=AsyncDenseVectorStrategy(),也可以不指定retrieval_strategy参数

  • 如果是使用Sparse检索策略,需要指定retrieval_strategy=AsyncSparseVectorStrategy(model_id=".elser_model_2"),这里需要额外部署 ElasticSearch 的 ELSER 模型[16]

混合检索

定义好了 2 种检索器后,我们再来了解如何将这些检索进行融合,在 LlamaIndex 的 ElasticsearchStore 类中提供了混合检索的方法,示例代码如下:

from llama_index.vector_stores.elasticsearch import AsyncDenseVectorStrategyvector_store = ElasticsearchStore(index_name="avengers",es_url="http://localhost:9200",retrieval_strategy=AsyncDenseVectorStrategy(hybrid=True),
)
  • 这里的检索策略还是使用Dense检索策略,但是指定了hybrid=True参数,表示使用混合检索

设置了混合检索策略后,在融合检索结果时会自动使用 Elasicsearch 的 RRF 功能。

RRF(倒数排名融合) 是一种融合检索算法,用于结合多个检索结果列表。每个结果列表中的每个文档被分配一个分数,分数基于文档在列表中的排名位置。该算法的基本思想是,通过对多个检索器的结果进行融合,来提高检索性能。

但在 Elasticsearch 的免费版本中,这个功能是不可用的:

图片

因此我们需要自己实现 RRF 功能,RRF 的论文可以看这里[17],下面是 RRF 的代码实现:

from typing import List
from llama_index.core.schema import NodeWithScoredef fuse_results(results_dict, similarity_top_k: int = 2):"""Fuse results."""k = 60.0fused_scores = {}text_to_node = {}# 计算倒数排名分数for nodes_with_scores in results_dict.values():for rank, node_with_score in enumerate(sorted(nodes_with_scores, key=lambda x: x.score or 0.0, reverse=True)):text = node_with_score.node.get_content()text_to_node[text] = node_with_scoreif text not in fused_scores:fused_scores[text] = 0.0fused_scores[text] += 1.0 / (rank + k)# 结果按分数排序reranked_results = dict(sorted(fused_scores.items(), key=lambda x: x[1], reverse=True))# 结果还原为节点集合reranked_nodes: List[NodeWithScore] = []for text, score in reranked_results.items():reranked_nodes.append(text_to_node[text])reranked_nodes[-1].score = scorereturn reranked_nodes[:similarity_top_k]
  • 方法的参数results_dict是所有检索器的检索结果集合,similarity_top_k是最相似的结果数量

  • 假设results_dict的值是{'full-text': [nodes], 'vector': [nodes]},这个方法方法的作用是将所有的检索结果节点进行融合,然后选出最相似的similarity_top_k个节点

  • 方法开头是初始化一些变量,k 用于计算倒数排名分数,fused_scores 用于存储节点文本和融合后分数的映射,text_to_node 用于存储节点文本到节点的映射

  • 然后是计算每个节点的倒数排名分数,先将 results_dict 中的每个节点按照分数进行排序,然后计算每个节点的倒数排名分数,将结果保存到 fused_scores 中,同时将节点文本和节点的关系保存到 text_to_nodes

  • 接着再对 fused_scores 按照倒数排名分数进行排序,得到 reranked_results

  • 然后根据 reranked_results 将结果还原成节点集合的形式,并将节点的分数设置为融合后的分数,最终结果保存到 reranked_nodes 列表中

  • 最后返回最相似的结果,返回 reranked_nodes 列表中的前 similarity_top_k 个节点

定义好融合函数后,我们再定义一个方法来执行多个检索器,这个方法返回的结果就是融合函数的参数 results_dict,示例代码如下:

from tqdm.asyncio import tqdmdef run_queries(query, retrievers):"""Run query against retrievers."""tasks = []for i, retriever in enumerate(retrievers):tasks.append(retriever.aretrieve(query))task_results = await tqdm.gather(*tasks)results_dict = {}for i, query_result in enumerate(task_results):results_dict[(query, i)] = query_resultreturn results_dict
  • 方法的参数query是原始问题,retrievers是多个检索器的集合

  • 将问题传给每个检索器,构建异步任务列表tasks

  • 然后使用await tqdm.gather(*tasks)并行执行所有的检索器,并行执行可以提高检索效率

  • 最后将检索结果保存到results_dict中,返回results_dict

因为我们使用了异步方式进行检索,原先的CustomEmbeddings中的方法也需要修改,示例代码如下:

+import asyncio-    def _aget_query_embedding(self, query: str) -> Embedding:
-        return get_embedding(text=query, model=self._model, url=self._url)
+    async def _aget_query_embedding(self, query: str) -> Embedding:
+        loop = asyncio.get_event_loop()
+        return await loop.run_in_executor(
+            None, get_embedding, query, self._model, self._url
+        )

然后我们构建一个融合检索器来将上面定义的方法组合到一起,示例代码如下:

from typing import List
from llama_index.core import QueryBundle
from llama_index.core.retrievers import BaseRetriever
from llama_index.core.schema import NodeWithScore
import asyncioclass FusionRetriever(BaseRetriever):"""Ensemble retriever with fusion."""def __init__(self,retrievers: List[BaseRetriever],similarity_top_k: int = 2,) -> None:"""Init params."""self._retrievers = retrieversself._similarity_top_k = similarity_top_ksuper().__init__()def _retrieve(self, query_bundle: QueryBundle) -> List[NodeWithScore]:"""Retrieve."""results = asyncio.run(run_queries(query_bundle.query_str, self._retrievers))final_results = fuse_results(results, similarity_top_k=self._similarity_top_k)return final_results
  • 这个融合检索器的类继承自BaseRetriever类,重写了_retrieve方法

  • 构造方法中的参数retrievers是多个检索器的集合,similarity_top_k是最相似的结果数量

  • _retrieve方法中,调用了run_queries方法来获取检索结果results

  • 然后调用了fuse_results方法来融合检索结果并返回

我们来看融合检索器运行后的检索结果,代码示例如下:

fusion_retriever = FusionRetriever([text_retriever, vector_retriever], similarity_top_k=2
)
question = "Which two members of the Avengers created Ultron?"
nodes = fusion_retriever.retrieve(question)
for node in nodes:print("-" * 50)print(f"node content: {node.text[:100]}...")print(f"node score: {node.score}\n")# 显示结果
-----------------------------------------------node content: In the Eastern European country of Sokovia, the Avengers—Tony Stark, Thor, Bruce Banner, Steve Roger...
node score: 0.03306010928961749-----------------------------------------------node content: Thor departs to consult with Dr. Erik Selvig on the apocalyptic future he saw in his hallucination, ...
node score: 0.016666666666666666
  • 首先定义了一个 FusionRetriever 对象,传入了全文检索器和向量检索器,同时设置了最相似的结果数量为 2

  • 然后传入了一个问题,获取检索结果

从结果中可以看到,检索结果节点返回的分数是经过 RRF 融合后的分数,分数值比较低,与原始的 Rerank 分数值不太匹配,这时我们可以使用 Rerank 模型来对检索结果进行重排序。

from llama_index.core.query_engine import RetrieverQueryEnginererank = CustomRerank(model="BAAI/bge-reranker-base", url="http://localhost:7007", top_n=2
)
Settings.llm = llm
query_engine = RetrieverQueryEngine(fusion_retriever, node_postprocessors=[rerank])
response = query_engine.query(question)
print(f"response: {response}")
for node in response.source_nodes:print("-" * 50)print(f"node content: {node.text[:100]}...")print(f"node score: {node.score}\n")# 显示结果
response: Tony Stark and Bruce Banner.
-----------------------------------------------node content: In the Eastern European country of Sokovia, the Avengers—Tony Stark, Thor, Bruce Banner, Steve Roger...
node score: 0.8329173-----------------------------------------------node content: Thor departs to consult with Dr. Erik Selvig on the apocalyptic future he saw in his hallucination, ...
node score: 0.24689633
  • CustomRerank类是一个自定义的 Rerank 类

  • 在系统设置中设置了 LLM 模型来生成答案

  • 通过混合检索器构建查询引擎,并在node_postprocessors参数中传入了 Rerank 模型,表示在检索结果后使用 Rerank 模型对检索结果进行重排序

  • 最后传入问题,获取检索结果

从结果中可以看到,检索结果节点返回的分数是经过 Rerank 模型重排序后的分数,分数值比较高,这样我们的混合检索系统就构建完成了。

总结

混合检索是一种在 RAG 应用中常用的检索策略,通过融合多种检索方式,可以提高检索的准确性和效率。今天我们通过 LlamaIndex 的代码实践,了解了构建混合检索系统的流程,同时也学习了如何使用 Llama3 和 ElasticSearch 来实现混合检索的效果,以及混合检索中一些常见的检索策略和排序算法。

关注我,一起学习各种人工智能和 AIGC 新技术,欢迎交流,如果你有什么想问想说的,欢迎在评论区留言。

用通俗易懂的方式讲解系列

  • 重磅来袭!《大模型面试宝典》(2024版) 发布!

  • 重磅来袭!《大模型实战宝典》(2024版) 发布!

  • 用通俗易懂的方式讲解:不用再找了,这是大模型最全的面试题库

  • 用通俗易懂的方式讲解:这是我见过的最适合大模型小白的 PyTorch 中文课程

  • 用通俗易懂的方式讲解:一文讲透最热的大模型开发框架 LangChain

  • 用通俗易懂的方式讲解:基于 LangChain + ChatGLM搭建知识本地库

  • 用通俗易懂的方式讲解:基于大模型的知识问答系统全面总结

  • 用通俗易懂的方式讲解:ChatGLM3 基础模型多轮对话微调

  • 用通俗易懂的方式讲解:最火的大模型训练框架 DeepSpeed 详解来了

  • 用通俗易懂的方式讲解:这应该是最全的大模型训练与微调关键技术梳理

  • 用通俗易懂的方式讲解:Stable Diffusion 微调及推理优化实践指南

  • 用通俗易懂的方式讲解:大模型训练过程概述

  • 用通俗易懂的方式讲解:专补大模型短板的RAG

  • 用通俗易懂的方式讲解:大模型LLM Agent在 Text2SQL 应用上的实践

  • 用通俗易懂的方式讲解:大模型 LLM RAG在 Text2SQL 上的应用实践

  • 用通俗易懂的方式讲解:大模型微调方法总结

  • 用通俗易懂的方式讲解:涨知识了,这篇大模型 LangChain 框架与使用示例太棒了

  • 用通俗易懂的方式讲解:掌握大模型这些优化技术,优雅地进行大模型的训练和推理!

  • 用通俗易懂的方式讲解:九大最热门的开源大模型 Agent 框架来了

参考:

[1]LlamaIndex: https://www.llamaindex.ai/
[2] Llama3: https://llama.meta.com/llama3/
[3]ElasticSearch: https://www.elastic.co/cn/elasticsearch/
[4]Ollama: _https://ollama.com/
[5]vllm: https://github.com/vllm-project/vllm
[7]自定义 LLM: https://docs.llamaindex.ai/en/stable/module_guides/models/llms/usage_custom/
[9] TEI: https://github.com/huggingface/text-embeddings-inference
[10]Xinference: https://inference.readthedocs.io/en/latest/
[12]BAAI/bge-base-en-v1.5: https://huggingface.co/BAAI/bge-base-en-v1.5
[13]BAAI/bge-reranker-base: https://huggingface.co/BAAI/bge-reranker-base
[14]复仇者联盟: https://en.wikipedia.org/wiki/Avenger

[16] ELSER 模型: https://www.elastic.co/guide/en/machine-learning/current/ml-nlp-elser.html
[17] 这里: https://plg.uwaterloo.ca/~gvcormac/cormacksigir09-rrf.pdf

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/pingmian/23552.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode 算法:合并区间c++

原题链接🔗:合并区间 难度:中等⭐️⭐️ 题目 以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] [starti, endi] 。请你合并所有重叠的区间,并返回 一个不重叠的区间数组,该数组需恰…

Nginx编译安装+nginx模块

一、I/O模型 处理高并发的时候用 1.1I/O模型简介 同步/异步(消息反馈机制):关注的是消息通信机制,即调用者在等待一件事情的处理结果时,被调用者是否提供完成状态的通知。 同步:synchronous,…

java第二十课 —— 面向对象习题

类与对象练习题 编写类 A01,定义方法 max,实现求某个 double 数组的最大值,并返回。 public class Chapter7{public static void main(String[] args){A01 m new A01();double[] doubleArray null;Double res m.max(doubleArray);if(res !…

Mysql8安装教程与配置(超详细图文)

MySQL 8.0 是 MySQL 数据库的一个重大更新版本,它引入了许多新特性和改进,旨在提高性能、安全性和易用性。 1.下载MySQL 安装包 注:本文使用的是压缩版进行安装。 (1)从网盘下载安装文件 点击此处直接下载 &#…

JavaWeb3 Ajax+Axios+Element+Nginx部署

Ajax 异步JS和XML 1.数据交换&#xff1a;给服务器发送请求&#xff0c;并获取服务器相应的数据 2.异步交互&#xff1a;在不重新加载整个页面的情况下&#xff0c;与服务器交换数据并更新部分网页 同步与异步 原生Ajax <!DOCTYPE html> <html> <body><…

Android——热点开关演讲稿

SoftAP打开与关闭 目录 1.三个名词的解释以及关系 Tethering——网络共享&#xff0c;WiFi热点、蓝牙、USB SoftAp——热点(无线接入点)&#xff0c;临时接入点 Hostapd——Hostapd是用于Linux系统的软件&#xff0c;&#xff0c;支持多种无线认证和加密协议&#xff0c;将任…

Java集合的迭代操作,Set Map接口以及工具类方法

1、集合元素迭代 1.1 集合元素遍历 集合的遍历&#xff1a;把集合中的每一个元素获取出来 使用for遍历 使用迭代器遍历 Iterator表示迭代器对象&#xff0c;迭代器中拥有一个指针&#xff0c;默认指向第一个元素之前&#xff0c; . boolean hasNext()&#xff1a;判断指针后是…

任务3.7 开发名片管理系统

本实战项目以Java语言为基础&#xff0c;精心打造了一个功能全面的名片管理系统。系统采用面向对象的设计原则&#xff0c;通过Card类来封装每张名片的详细信息&#xff0c;如姓名、单位、职位和联系电话等&#xff0c;并提供了标准的访问器和修改器方法以确保数据的安全访问。…

ROS学习记录:自定义消息类型

前言 当我们需要传输一些特殊的数据时&#xff0c;且官方的消息包无法满足需求&#xff0c;我们便可以自己定义一个消息类型。 实验步骤 一、在终端输入cd ~/catkin_ws1/src进入工作空间中src目录 二、输入catkin_create_pkg qq_msgs roscpp rospy std_msgs message_generati…

windows10子系统wsl ubuntu22.04下GN/ninja环境搭建

打开windows10子系统 ubuntu22.04 ubuntu22.04: 首先需要 安装ninja $sudo apt install ninja-build $ ninja --version 1.10.0 安装clang $sudo apt install clang $clang --version Ubuntu clang version 14.0.0-1ubuntu1.1安装gn Github: https://github.com/timniederh…

SDXL终于有了足够好的 Openpose 和 Scribble 模型可以使用了。

SDXL终于有了足够好的 Openpose 和 Scribble 模型可以使用了。 xinsir 发布的Openpose 和 Scribble 模型质量相当好&#xff0c;尤其是 Openpose。不过只支持姿态不支持面部。 再加上前几天的 Anyline 线条预处理器和 Canny 模型。SDXL 的生态在发布快一年的时候成熟了。 模…

太阳能语音警示杆在户外的应用及其作用

一、太阳能语音警示杆的主要应用领域 交通管理&#xff1a;在城市道路、乡村公路、高速公路等交通要道&#xff0c;太阳能语音警示杆可以用于提醒驾驶员注意前方路况、减速慢行或者避让施工区域。例如&#xff0c;在临时施工路段&#xff0c;警示杆可以播放“前方施工&#xf…

Orange Pi AI Pro 开箱 记录

香橙派 AIpro&#xff08;OrangePi AIpro&#xff09;是一款面向AI开发的强大开发板&#xff0c;提供了高性能和多功能的开发环境。我将结合自己的开发经验&#xff0c;详细介绍这款开发板的性能、适用场景及使用体验。 一、产品概述 香橙派 AIpro配备了强大的硬件配置&#…

详解 Flink 的运行架构

一、组件 1. JobManager 作业管理器是一个 Flink 集群中任务管理和调度的核心&#xff0c;是控制应用执行的主进程 1.1 JobMaster JobMaster 是 JobManager 中最核心的组件&#xff0c;负责处理单独的作业&#xff08;Job&#xff09;。JobMaster 和具体的 Job 是一一对应的&…

通过 SFP 接口实现千兆光纤以太网通信4

Tri Mode Ethernet MAC 与 1G/2.5G Ethernet PCS/PMA or SGMII 的连接 在设计中&#xff0c;需要将 Tri Mode Ethernet MAC 与 1G/2.5G Ethernet PCS/PMA or SGMII 之间通过 GMII 接口互联。Tri Mode Ethernet MAC IP 核的工作时钟源为 1G/2.5G Ethernet PCS/PMA or SGMII …

今日增长工具精选| 8个SaaS出海必备运营工具

一、SurveyMonkey 是一个灵活、方便、经济实惠的在线调查工具&#xff0c;可以通过自行设计定制化问卷&#xff0c;开展消费者调研&#xff0c;收集第一手数据&#xff0c;获取用户反馈。 客户涵盖财富100强公司以及其他不同规模和类型的组织&#xff0c;如公司、学术研究机构…

伯克希尔·哈撒韦:“股神”的“登神长阶”

股价跳水大家见过不少&#xff0c;但一秒跌掉62万美元的你见过吗&#xff1f; 今天我们来聊聊“股市”巴菲特的公司——伯克希尔哈撒韦 最近&#xff0c;由于纽交所技术故障&#xff0c;伯克希尔哈撒韦A类股股价上演一秒归“零”&#xff0c;从超过62万美元跌成185.1美元&…

关于main函数参数列表的那些事

写在最前面&#xff1a; 本篇博客所写代码&#xff0c;全部都依赖于Linux环境。 在开始之前&#xff0c;我们先问自己几个问题&#xff1a; main函数可以传参吗?如果main函数可以传参&#xff0c;最多可以传几个参数。main函数传递的参数具体作用是什么&#xff1f; 一.是否…

C++之类与类之间的关系

1、UML 2、继承&#xff08;泛化&#xff09; 3、关联 一个类对象与另一个类对象存在一个固定关系。他们的关系不是暂时的&#xff0c;而是固定的。 一个类对象作为另一个类对象的成员。例如订单&#xff0c;是用户的一个成员。用户关联订单。 4、聚合 聚合其实是特殊的一种…